
Michael Colombo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3628384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Is the avian hippocampus a functional homologue of the mammalian hippocampus?. Neuroscience and Biobehavioral Reviews, 2000, 24, 465-484.	6.1	224
2	Neural ensemble coding in inferior temporal cortex. Journal of Neurophysiology, 1994, 71, 2325-2337.	1.8	153
3	Functional Differentiation Along the Anterior-Posterior Axis of the Hippocampus in Monkeys. Journal of Neurophysiology, 1998, 80, 1002-1005.	1.8	149
4	Auditory association cortex lesions impair auditory short-term memory in monkeys. Science, 1990, 247, 336-338.	12.6	138
5	Pigeons on Par with Primates in Numerical Competence. Science, 2011, 334, 1664-1664.	12.6	138
6	Social Evaluation or Simple Association? Simple Associations May Explain Moral Reasoning in Infants. PLoS ONE, 2012, 7, e42698.	2.5	122
7	Single Units in the Pigeon Brain Integrate Reward Amount and Time-to-Reward in an Impulsive Choice Task. Current Biology, 2005, 15, 594-602.	3.9	121
8	Representation of serial order in monkeys (Cebus apella) Journal of Experimental Psychology, 1988, 14, 131-139.	1.7	118
9	To have and to hold: Episodic memory in 3―and 4â€yearâ€old children. Developmental Psychobiology, 2013, 55, 125-132.	1.6	118
10	Extent and limits of the matching concept in monkeys (Cebus apella) Journal of Experimental Psychology, 1985, 11, 35-51.	1.7	112
11	Responses of inferior temporal cortex and hippocampal neurons during delayed matching-to-sample in monkeys (Macaca fascicularis) Behavioral Neuroscience, 1994, 108, 443-455.	1.2	107
12	Neural Correlates of Executive Control in the Avian Brain. PLoS Biology, 2005, 3, e190.	5.6	94
13	The symbolic distance effect in monkeys (Cebus apella). Learning and Behavior, 1990, 18, 133-140.	3.4	78
14	The effect of familiarization time, retention interval, and context change on adults' performance in the visual paired-comparison task. Developmental Psychobiology, 2004, 44, 146-155.	1.6	75
15	Serial learning with wild card items by monkeys (Cebus apella): Implications for knowledge of ordinal position Journal of Comparative Psychology (Washington, D C: 1983), 1989, 103, 252-261.	0.5	72
16	Interpreting visual preferences in the visual paired-comparison task Journal of Experimental Psychology: Learning Memory and Cognition, 2007, 33, 823-831.	0.9	72
17	The Effects of Superior Temporal Cortex Lesions on the Processing and Retention of Auditory Information in Monkeys (Cebus apella). Journal of Neuroscience, 1996, 16, 4501-4517.	3.6	64
18	Auditory matching-to-sample in monkeys (Cebus apella). Learning and Behavior, 1985, 13, 375-382.	3.4	63

#	Article	lF	CITATIONS
19	Extent and limits of the matching concept in monkeys (Cebus apella) Journal of Experimental Psychology, 1985, 11, 35-51.	1.7	62
20	Orthographic processing in pigeons (<i>Columba livia</i>). Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11272-11276.	7.1	53
21	The role of the avian hippocampus in orientation in space and time. Brain Research, 2001, 919, 292-301.	2.2	43
22	Hippocampal lesions, contextual retrieval, and autoshaping in pigeons. Brain Research, 2002, 928, 60-68.	2.2	40
23	A lightweight microdrive for single-unit recording in freely moving rats and pigeons. Methods, 2003, 30, 152-158.	3.8	39
24	Memory procedures, performance and processes in pigeons. Cognitive Brain Research, 1996, 3, 309-317.	3.0	37
25	Visual response properties of neurons in four areas of the avian pallium. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 235-245.	1.6	35
26	Delay activity in avian prefrontal cortex - sample code or reward code?. European Journal of Neuroscience, 2011, 33, 726-735.	2.6	34
27	Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia). Behavioural Brain Research, 2017, 317, 382-392.	2.2	33
28	Apes, feathered apes, and pigeons: differences and similarities. Current Opinion in Behavioral Sciences, 2017, 16, 35-40.	3.9	33
29	Representation of serial order: A comparative analysis of humans, monkeys, and pigeons. Brain Research Bulletin, 2008, 76, 307-312.	3.0	31
30	Hippocampus, delay neurons, and sensory heterogeneity. Behavioral and Brain Sciences, 1996, 19, 766-767.	0.7	30
31	The effects of inferior temporal and dorsolateral frontal lesions on serial-order behavior and visual imagery in monkeys. Cognitive Brain Research, 1993, 1, 211-217.	3.0	29
32	Representation of serial order in humans: A comparison to the findings with monkeys (Cebus apella). Psychonomic Bulletin and Review, 2001, 8, 262-269.	2.8	29
33	Responses of ectostriatal neurons during delayed matching-to-sample behavior in pigeons (Columba) Tj ETQq	1 1 0.78431 2.2	4 rgBT /Over
34	Knowledge of the ordinal position of list items in pigeons Journal of Experimental Psychology, 2011, 37, 483-487.	1.7	27
35	ON THE LIMITS OF THE MATCHING CONCEPT IN MONKEYS (CEBUS APELLA). Journal of the Experimental Analysis of Behavior, 1989, 52, 225-236.	1.1	26
36	Effects of auditory and visual interference on auditory-visual delayed matching-to-sample in monkeys (Macaca fascicularis) Behavioral Neuroscience, 1994, 108, 636-639.	1.2	26

#	Article	IF	CITATIONS
37	Brain Cells in the Avian â€~Prefrontal Cortex' Code for Features of Slot-Machine-Like Gambling. PLoS ONE, 2011, 6, e14589.	2.5	25
38	Representation of serial order in pigeons (Columba livia) Journal of Experimental Psychology, 2010, 36, 423-429.	1.7	24
39	Sequential planning in rhesus monkeys (Macaca mulatta). Animal Cognition, 2011, 14, 317-324.	1.8	23
40	Neurons in the Pigeon Nidopallium Caudolaterale Display Value-Related Activity. Scientific Reports, 2018, 8, 5377.	3.3	23
41	The formation and execution of sequential plans in pigeons (Columba livia). Behavioural Processes, 2010, 83, 179-182.	1.1	21
42	How bad do you want it? Reward modulation in the avian nidopallium caudolaterale Behavioral Neuroscience, 2013, 127, 544-554.	1.2	20
43	The functional architecture, receptive field characteristics, and representation of objects in the visual network of the pigeon brain. Progress in Neurobiology, 2020, 195, 101781.	5.7	18
44	Eye movements during list execution reveal no planning in monkeys (Macaca fascicularis) Journal of Experimental Psychology, 2009, 35, 587-592.	1.7	17
45	Pigeon NCL and NFL neuronal activity represents neural correlates of the sample Behavioral Neuroscience, 2017, 131, 213-219.	1.2	16
46	Visual and spatial discrimination behavior following hippocampal lesions in pigeons. Cognitive, Affective and Behavioral Neuroscience, 2000, 28, 463-475.	1.3	16
47	Golden Rule or valence matching? Methodological problems in Hamlin et al Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1426; author reply E1427.	7.1	15
48	The Ontogeny of Serial-Order Behavior in Humans (Homo sapiens): Representation of a List Journal of Comparative Psychology (Washington, D C: 1983), 2004, 118, 71-81.	0.5	13
49	Searching for Face-Category Representation in the Avian Visual Forebrain. Frontiers in Physiology, 2019, 10, 140.	2.8	13
50	Hippocampal lesions and negative patterning in pigeons. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 51-56.	1.3	13
51	On tonal pattern perception in monkeys (Cebus apella). Learning and Behavior, 1988, 16, 417-424.	3.4	11
52	Bartolomeo Panizza's Observations on the optic nerve (1855). Brain Research Bulletin, 2002, 58, 529-539.	3.0	10
53	Responses of pigeon (Columba livia) Wulst neurons during acquisition and reversal of a visual discrimination task Behavioral Neuroscience, 2008, 122, 1139-1147.	1.2	10
54	Neural correlates of directed forgetting in the avian prefrontal cortex Behavioral Neuroscience, 2008, 122, 199-209.	1.2	10

#	Article	IF	CITATIONS
55	Pigeon nidopallium caudolaterale, entopallium, and mesopallium ventrolaterale neural responses during categorisation of Monet and Picasso paintings. Scientific Reports, 2020, 10, 15971.	3.3	10
56	Neurophysiological Studies of Learning and Memory in Pigeons. Comparative Cognition and Behavior Reviews, 0, 8, 23-43.	2.0	10
57	Neurons in the pigeon visual network discriminate between faces, scrambled faces, and sine grating images. Scientific Reports, 2022, 12, 589.	3.3	10
58	Degree of representation of the matching concept in pigeons (Columba livia) Journal of Comparative Psychology (Washington, D C: 1983), 2003, 117, 246-256.	0.5	9
59	Are There Differences in "Intelligence―Between Nonhuman Species? The Role of Contextual Variables. Frontiers in Psychology, 2020, 11, 2072.	2.1	9
60	Sustained activation and executive control in the avian prefrontal cortex. Brain Research Bulletin, 2008, 76, 317-323.	3.0	8
61	Inhibition, the final frontier: The impact of hippocampal lesions on behavioral inhibition and spatial processing in pigeons Behavioral Neuroscience, 2014, 128, 42-47.	1.2	8
62	A positional coding mechanism in pigeons after learning multiple three-item lists. Animal Cognition, 2010, 13, 653-661.	1.8	7
63	Columban Simulation Project 2.0: Numerical Competence and Orthographic Processing in Pigeons and Primates. Frontiers in Psychology, 2019, 10, 3017.	2.1	7
64	The effects of hippocampal and area parahippocampalis lesions on the processing and retention of serialâ€order behavior, autoshaping, and spatial behavior in pigeons. Hippocampus, 2021, 31, 261-280.	1.9	7
65	Delay activity in pigeon nidopallium caudolaterale during a variable-delay memory task Behavioral Neuroscience, 2019, 133, 563-568.	1.2	7
66	Prospective Processing: Behavioural and Neural Evidence. Japanese Journal of Animal Psychology, 2017, 67, 47-61.	0.3	6
67	Seeing the Forest for the Trees, and the Ground Below My Beak: Global and Local Processing in the Pigeon's Visual System. Frontiers in Psychology, 0, 13, .	2.1	5
68	Effects of nidopallium caudolaterale inactivation on serial-order behavior in pigeons (<i>Columba) Tj ETQq0 0 (</i>) rgBT /Ove 1.8	rlock 10 Tf 50
69	Nidopallium caudolaterale neuronal responses during serial-order behaviour in pigeons. Behavioural Brain Research, 2020, 378, 112269.	2.2	4
70	Delay activity in the Wulst of pigeons (Columba livia) represents correlates of both sample and reward information. Neurobiology of Learning and Memory, 2020, 171, 107214.	1.9	4
71	Pigeons (Columba livia) learn a four-item list by trial and error Journal of Comparative Psychology (Washington, D C: 1983), 2018, 132, 234-239.	0.5	4
72	Mirror mirror on the wall, it's not the mark I care about at all. Learning and Motivation, 2022, 77,	1.2	4

101785.

5

#	Article	IF	CITATIONS
73	Avian and mammalian hippocampus: No degrees of freedom in evolution of function. Behavioral and Brain Sciences, 2003, 26, 554-555.	0.7	3
74	Aniracetam does not improve working memory in neurologically healthy pigeons. PLoS ONE, 2019, 14, e0215612.	2.5	3
75	Eye movements reveal planning in humans: A comparison with Scarf and Colombo's (2009) monkeys Journal of Experimental Psychology Animal Learning and Cognition, 2014, 40, 178-184.	0.5	2
76	Do â€~literate' pigeons (Columba livia) show mirror-word generalization?. Animal Cognition, 2017, 20, 999-1002.	1.8	2
77	Serial List Learning. , 2018, , 1-10.		2
78	The Differential Outcomes Effect in Pigeons (Columba livia): Is It Truly Anticipatory?. PLoS ONE, 2016, 11, e0150510.	2.5	2
79	The generation effect or simply generating an effect?. Journal of Comparative Psychology (Washington, D C: 1983), 2015, 129, 329-333.	0.5	1
80	Neurons in the pigeon nidopallium caudolaterale, but not the corticoidea dorsolateralis, display value and effort discounting activity. Scientific Reports, 2019, 9, 15677.	3.3	1
81	Editorial: The Comparative Psychology of Intelligence: Macphail Revisited. Frontiers in Psychology, 2021, 12, 648782.	2.1	1
82	Face-Selective Neurons: Comparative Perspectives. , 2018, , 1-9.		1
83	The value of a comparative perspective: Theoretical comment on Pearce et al. (2005) Behavioral Neuroscience, 2005, 119, 1411-1414.	1.2	Ο
84	Memory Research in the Southernmost Psychology Department. Cognitive Processing, 2005, 6, 266-271.	1.4	0
85	Making Clear the Value of Basic Behavioral Research. Commentary: A Crisis in Comparative Psychology: Where Have All the Undergraduates Gone?. Frontiers in Psychology, 2015, 6, 1766.	2.1	0
86	Avian Brains: Primate-like Functions of Neurons inÂtheÂCrow Brain. Current Biology, 2019, 29, R794-R796.	3.9	0
87	Entopallium. , 2017, , 1-6.		Ο
88	Delay Neurons: Comparative Overview. , 2019, , 1-8.		0
89	Sheeple? The need for more research on sheep cognition. Animal Sentience, 2019, 4, .	0.5	0
90	Matching-to-Sample: Comparative Overview. , 2019, , 1-7.		0

#	Article	IF	CITATIONS
91	Claw-in-the-door: pigeons, like humans, display the foot-in-the-door effect. Animal Cognition, 2020, 23, 893-900.	1.8	Ο
92	Matching-to-Sample: Comparative Overview. , 2022, , 4097-4102.		0
93	Serial List Learning. , 2022, , 6346-6355.		Ο
94	Face-Selective Neurons: Comparative Perspectives. , 2022, , 2593-2601.		0
95	Entopallium. , 2022, , 2343-2348.		Ο
96	Delay Neurons: Comparative Overview. , 2022, , 1960-1968.		0