Ciceron Ayala-Orozco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3628183/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Light-activated molecular machines are fast-acting broad-spectrum antibacterials that target the membrane. Science Advances, 2022, 8, .	4.7	28
2	Heavy oil viscosity reduction at mild temperatures using palladium acetylacetonate. Fuel, 2021, 294, 120546.	3.4	9
3	Visible-Light-Activated Molecular Nanomachines Kill Pancreatic Cancer Cells. ACS Applied Materials & Interfaces, 2020, 12, 410-417.	4.0	24
4	Understanding the role of iron (III) tosylate on heavy oil viscosity reduction. Fuel, 2020, 274, 117808.	3.4	7
5	Molecular Nanomachines Can Destroy Tissue or Kill Multicellular Eukaryotes. ACS Applied Materials & Interfaces, 2020, 12, 13657-13670.	4.0	16
6	Indium-decorated Pd nanocubes degrade nitrate anions rapidly. Applied Catalysis B: Environmental, 2020, 276, 119048.	10.8	26
7	The application of nanotechnology in enhancing immunotherapy for cancer treatment: current effects and perspective. Nanoscale, 2019, 11, 17157-17178.	2.8	59
8	Enhancing T ₁ magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6960-6965.	3.3	75
9	Toward Surface Plasmon-Enhanced Optical Parametric Amplification (SPOPA) with Engineered Nanoparticles: A Nanoscale Tunable Infrared Source. Nano Letters, 2016, 16, 3373-3378.	4.5	50
10	Nanoparticle-Mediated, Light-Induced Phase Separations. Nano Letters, 2015, 15, 7880-7885.	4.5	107
11	Fluorescence Enhancement of Molecules Inside a Gold Nanomatryoshka. Nano Letters, 2014, 14, 2926-2933.	4.5	188
12	Impurity-Induced Plasmon Damping in Individual Cobalt-Doped Hollow Au Nanoshells. Journal of Physical Chemistry B, 2014, 118, 14056-14061.	1.2	21
13	Nanoparticles Heat through Light Localization. Nano Letters, 2014, 14, 4640-4645.	4.5	379
14	Sub-100nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. Journal of Controlled Release, 2014, 191, 90-97.	4.8	79
15	Hot-Electron-Induced Dissociation of H ₂ on Gold Nanoparticles Supported on SiO ₂ . Journal of the American Chemical Society, 2014, 136, 64-67.	6.6	458
16	The Surprising <i>in Vivo</i> Instability of Near-IR-Absorbing Hollow Au–Ag Nanoshells. ACS Nano, 2014, 8, 3222-3231.	7.3	148
17	Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment: Benchmarking against Nanoshells. ACS Nano, 2014, 8, 6372-6381.	7.3	334
18	Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano	4.5	273

#	Article	IF	CITATIONS
19	Angle- and Spectral-Dependent Light Scattering from Plasmonic Nanocups. ACS Nano, 2011, 5, 7254-7262.	7.3	95