## Yueqiang Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3627665/publications.pdf Version: 2024-02-01



YUEDIANC SHANC

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Parallel iterative finite element algorithms based on full domain partition for the stationary<br>Navier–Stokes equations. Applied Numerical Mathematics, 2010, 60, 719-737.                                                 | 2.1 | 55        |
| 2  | Newton Iterative Parallel Finite Element Algorithm forÂthe Steady Navier-Stokes Equations. Journal of<br>Scientific Computing, 2010, 44, 92-106.                                                                             | 2.3 | 54        |
| 3  | A new parallel finite element algorithm for the stationary Navier–Stokes equations. Finite Elements in<br>Analysis and Design, 2011, 47, 1262-1279.                                                                          | 3.2 | 39        |
| 4  | A two-level subgrid stabilized Oseen iterative method for the steady Navier–Stokes equations. Journal of Computational Physics, 2013, 233, 210-226.                                                                          | 3.8 | 38        |
| 5  | Local and parallel finite element algorithms based on two-grid discretizations for the transient<br>Stokes equations. Numerical Algorithms, 2010, 54, 195-218.                                                               | 1.9 | 37        |
| 6  | Twoâ€level Newton iterative method for the 2D/3D steady Navierâ€6tokes equations. Numerical Methods<br>for Partial Differential Equations, 2012, 28, 1620-1642.                                                              | 3.6 | 37        |
| 7  | A parallel Oseen-linearized algorithm for the stationary Navier–Stokes equations. Computer Methods<br>in Applied Mechanics and Engineering, 2012, 209-212, 172-183.                                                          | 6.6 | 31        |
| 8  | A parallel two-level linearization method for incompressible flow problems. Applied Mathematics<br>Letters, 2011, 24, 364-369.                                                                                               | 2.7 | 23        |
| 9  | A comparison of three kinds of local and parallel finite element algorithms based on two-grid<br>discretizations for the stationary Navier–Stokes equations. Computers and Fluids, 2011, 40, 249-257.                        | 2.5 | 23        |
| 10 | A finite element variational multiscale method based on two-grid discretization for the steady<br>incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering,<br>2016, 300, 182-198.      | 6.6 | 23        |
| 11 | Parallel finite element variational multiscale algorithms for incompressible flow at high Reynolds numbers. Applied Numerical Mathematics, 2017, 117, 1-21.                                                                  | 2.1 | 23        |
| 12 | A parallel subgrid stabilized finite element method based on fully overlapping domain decomposition<br>for the Navier–Stokes equations. Journal of Mathematical Analysis and Applications, 2013, 403, 667-679.               | 1.0 | 17        |
| 13 | A parallel two-level finite element variational multiscale method for the Navier–Stokes equations.<br>Nonlinear Analysis: Theory, Methods & Applications, 2013, 84, 103-116.                                                 | 1.1 | 16        |
| 14 | A parallel finite element variational multiscale method based on fully overlapping domain<br>decomposition for incompressible flows. Numerical Methods for Partial Differential Equations, 2015,<br>31, 856-875.             | 3.6 | 16        |
| 15 | Parallel defect-correction algorithms based on finite element discretization for the Navier–Stokes equations. Computers and Fluids, 2013, 79, 200-212.                                                                       | 2.5 | 15        |
| 16 | A Parallel Subgrid Stabilized Finite Element Method Based on Two-Grid Discretization for Simulation of 2D/3D Steady Incompressible Flows. Journal of Scientific Computing, 2014, 60, 564-583.                                | 2.3 | 14        |
| 17 | Parallel iterative stabilized finite element algorithms based on the lowest equal-order elements for<br>the stationary Navier–Stokes equations. Applied Mathematics and Computation, 2019, 357, 35-56.                       | 2.2 | 14        |
| 18 | Error analysis of a fully discrete finite element variational multiscale method for timeâ€dependent<br>incompressible Navier–Stokes equations. Numerical Methods for Partial Differential Equations, 2013,<br>29, 2025-2046. | 3.6 | 12        |

YUEQIANG SHANG

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A new two-level defect-correction method for the steady Navier–Stokes equations. Journal of<br>Computational and Applied Mathematics, 2021, 381, 113009.                                                                    | 2.0 | 11        |
| 20 | Optimal error estimates of the penalty method for the linearized viscoelastic flows. International Journal of Computer Mathematics, 2010, 87, 3236-3253.                                                                    | 1.8 | 10        |
| 21 | Local and parallel stabilized finite element algorithms based on the lowest equal-order elements for<br>the steady Navier–Stokes equations. Mathematics and Computers in Simulation, 2020, 178, 464-484.                    | 4.4 | 10        |
| 22 | A parallel stabilized finite element variational multiscale method based on fully overlapping domain<br>decomposition for the incompressible Navier-Stokes equations. Applied Numerical Mathematics, 2021,<br>159, 138-158. | 2.1 | 9         |
| 23 | Local and parallel finite element algorithms based on domain decomposition for the 2D/3D Stokes equations with damping. Computers and Mathematics With Applications, 2021, 103, 82-103.                                     | 2.7 | 9         |
| 24 | A parallel stabilized finite element method based on the lowest equal-order elements for incompressible flows. Computing (Vienna/New York), 2020, 102, 65-81.                                                               | 4.8 | 7         |
| 25 | Parallel iterative stabilized finite element algorithms for the Navier–Stokes equations with nonlinear slip boundary conditions. International Journal for Numerical Methods in Fluids, 2021, 93, 1074-1109.                | 1.6 | 7         |
| 26 | A three-step Oseen correction method for the steady Navier–Stokes equations. Journal of Engineering<br>Mathematics, 2018, 111, 145-163.                                                                                     | 1.2 | 5         |
| 27 | A parallel finite element variational multiscale method for the Navier-Stokes equations with nonlinear slip boundary conditions. Applied Numerical Mathematics, 2021, 168, 274-292.                                         | 2.1 | 5         |
| 28 | New stabilized finite element method for timeâ€dependent incompressible flow problems. International<br>Journal for Numerical Methods in Fluids, 2010, 62, 166-187.                                                         | 1.6 | 4         |
| 29 | A Twoâ€Parameter Stabilized Finite Element Method for Incompressible Flows. Numerical Methods for<br>Partial Differential Equations, 2017, 33, 425-444.                                                                     | 3.6 | 4         |
| 30 | Parallel iterative stabilized finite element methods based on the quadratic equal-order elements for incompressible flows. Calcolo, 2020, 57, 1.                                                                            | 1.1 | 4         |
| 31 | Local and Parallel Finite Element Algorithms for the Stokes Equations with Nonlinear Slip Boundary<br>Conditions. International Journal of Computational Methods, 2020, 17, 1950050.                                        | 1.3 | 3         |
| 32 | A simplified twoâ€level subgrid stabilized method with backtracking technique for incompressible<br>flows at high Reynolds numbers. Numerical Methods for Partial Differential Equations, 2021, 37,<br>2067-2088.           | 3.6 | 3         |
| 33 | Local and parallel finite element algorithms for the time-dependent Oseen equations. Numerical Algorithms, 2021, 87, 1653-1677.                                                                                             | 1.9 | 2         |
| 34 | A stabilized fractional-step finite element method for the time-dependent Navier–Stokes equations.<br>International Journal of Nonlinear Sciences and Numerical Simulation, 2022, 23, 61-75.                                | 1.0 | 2         |
| 35 | Two-level defect-correction stabilized algorithms for the simulation of 2D/3D steady Navier-Stokes equations with damping. Applied Numerical Mathematics, 2021, 163, 182-203.                                               | 2.1 | 2         |
| 36 | A two-step stabilized finite element algorithm for the Smagorinsky model. Applied Mathematics and Computation, 2022, 422, 126971.                                                                                           | 2.2 | 2         |

YUEQIANG SHANG

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A two-level fully discrete finite element variational multiscale method for the unsteady<br>Navier–Stokes equations. Computational and Applied Mathematics, 2019, 38, 1.                                   | 2.2 | 1         |
| 38 | Parallel pressure projection stabilized finite element algorithms based on two-grid discretizations for incompressible flows. International Journal of Computer Mathematics, 2020, 97, 1563-1585.          | 1.8 | 1         |
| 39 | Local and parallel stabilized finite element methods based on full domain decomposition for the stationary Stokes equations. International Journal of Nonlinear Sciences and Numerical Simulation, 2021, . | 1.0 | 1         |
| 40 | A second-order finite element variational multiscale scheme for the fully discrete unsteady<br>Navier–Stokes equations. Journal of Applied Mathematics and Computing, 2018, 58, 95-110.                    | 2.5 | 1         |
| 41 | ON THE LINEARIZATION OF DEFECT-CORRECTION METHOD FOR THE STEADY NAVIER-STOKES EQUATIONS.<br>Journal of the Korean Mathematical Society, 2013, 50, 1129-1163.                                               | 0.4 | 1         |
| 42 | Local and parallel finite element algorithms for the incompressible Navier-Stokes equations with damping. Discrete and Continuous Dynamical Systems - Series B, 2022, 27, 6823.                            | 0.9 | 1         |
| 43 | Stability and convergence of some parallel iterative subgrid stabilized algorithms for the steady<br>Navier-Stokes equations. Advances in Computational Mathematics, 2022, 48, .                           | 1.6 | 1         |
| 44 | A three-step defect-correction algorithm for incompressible flows with friction boundary conditions. Numerical Algorithms, 0, , .                                                                          | 1.9 | 1         |
| 45 | A Simplified Parallel Two-Level Iterative Method for Simulation of Incompressible Navier-Stokes Equations. Advances in Applied Mathematics and Mechanics, 2015, 7, 715-735.                                | 1.2 | 0         |
| 46 | An Oseen-Type Post-Processed Finite Element Method Based on a Subgrid Model for the Time-Dependent<br>Navier–Stokes Equations. International Journal of Computational Methods, 2020, 17, 1950002.          | 1.3 | 0         |
| 47 | Parallel iterative finite-element algorithms for the Navier–Stokes equations with nonlinear slip<br>boundary conditions. International Journal of Nonlinear Sciences and Numerical Simulation, 2020, .     | 1.0 | 0         |
| 48 | A parallel stabilized quadratic equal-order finite element algorithm for the steady Navier-Stokes equations. International Journal of Computer Mathematics, 0, , 1-0.                                      | 1.8 | 0         |
| 49 | Twoâ€grid stabilized algorithms for the steady Navier–Stokes equations with damping. Mathematical<br>Methods in the Applied Sciences, 0, , .                                                               | 2.3 | 0         |