
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3627515/publications.pdf Version: 2024-02-01

NIKOLAL OSTCAARD

#	Article	IF	CITATIONS
1	Initiation of lightning flashes simultaneously observed from space and the ground: Narrow bipolar events. Atmospheric Research, 2022, 268, 105981.	4.1	9
2	Analysis of Blue Corona Discharges at the Top of Tropical Thunderstorm Clouds in Different Phases of Convection. Geophysical Research Letters, 2022, 49, .	4.0	12
3	Production of Terrestrial Gammaâ€Ray Flashes During the Early Stages of Lightning Flashes. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	12
4	Multispectral Optical Diagnostics of Lightning from Space. Remote Sensing, 2022, 14, 2057.	4.0	3
5	Terrestrial Gammaâ€Ray Flashes With Accompanying Elves Detected by ASIM. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	11
6	Observations of Blue Corona Discharges in Thunderclouds. Geophysical Research Letters, 2022, 49, .	4.0	8
7	Multiâ€Pulse Corona Discharges in Thunderclouds Observed in Optical and Radio Bands. Geophysical Research Letters, 2022, 49, .	4.0	7
8	Observation of the onset of a blue jet into the stratosphere. Nature, 2021, 589, 371-375.	27.8	20
9	Spectral Observations of Optical Emissions Associated With Terrestrial Gammaâ€Ray Flashes. Geophysical Research Letters, 2021, 48, 2020GL090700.	4.0	24
10	A Simultaneous Observation of Lightning by ASIM, Colombia‣ightning Mapping Array, GLM, and ISS‣IS. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033735.	3.3	14
11	Constraining Spectral Models of a Terrestrial Gammaâ€Ray Flash From a Terrestrial Electron Beam Observation by the Atmosphereâ€Space Interactions Monitor. Geophysical Research Letters, 2021, 48, e2021GL093152.	4.0	6
12	Simultaneous Observations of EIP, TGF, Elve, and Optical Lightning. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033921.	3.3	15
13	A Rapid Gammaâ€Ray Glow Flux Reduction Observed From 20Âkm Altitude. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033467.	3.3	9
14	Blue Flashes as Counterparts to Narrow Bipolar Events: The Optical Signal of Shallow In loud Discharges. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035013.	3.3	17
15	Evolution of IMF B y Induced Asymmetries: The Role of Tail Reconnection. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029577.	2.4	5
16	Global Frequency and Geographical Distribution of Nighttime Streamer Corona Discharges (BLUEs) in Thunderclouds. Geophysical Research Letters, 2021, 48, e2021GL094657.	4.0	17
17	Observation of Terrestrial Gammaâ€Ray Flashes at Mid Latitude. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034432.	3.3	12
18	Quantifying the Lobe Reconnection Rate During Dominant IMF <i>B</i> _{<i>y</i>} Periods and Different Dipole Tilt Orientations. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029742.	2.4	8

#	Article	IF	CITATIONS
19	Optical emissions associated with narrow bipolar events from thunderstorm clouds penetrating into the stratosphere. Nature Communications, 2021, 12, 6631.	12.8	21
20	Spectral Analysis of Individual Terrestrial Gammaâ€Ray Flashes Detected by ASIM. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035347.	3.3	10
21	Very-high-frequency oscillations in the main peak of a magnetar giant flare. Nature, 2021, 600, 621-624.	27.8	20
22	A terrestrial gamma-ray flash and ionospheric ultraviolet emissions powered by lightning. Science, 2020, 367, 183-186.	12.6	60
23	Comparison of Highâ€Speed Optical Observations of a Lightning Flash From Space and the Ground. Earth and Space Science, 2020, 7, e2020EA001249.	2.6	15
24	Blue Optical Observations of Narrow Bipolar Events by ASIM Suggest Corona Streamer Activity in Thunderstorms. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032708.	3.3	38
25	Time-scale dependence of solar wind-based regression models of ionospheric electrodynamics. Scientific Reports, 2020, 10, 16406.	3.3	5
26	Constraints on Recoil Leader Properties Estimated from Xâ€ray Emissions in Aircraftâ€Triggered Discharges. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032151.	3.3	3
27	The 3rd AGILE Terrestrial Gamma Ray Flash Catalog. Part I: Association to Lightning Sferics. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031985.	3.3	18
28	The 3rd AGILE Terrestrial Gammaâ€ray Flashes Catalog. Part II: Optimized Selection Criteria and Characteristics of the New Sample. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031986.	3.3	19
29	Modeling lightning observations from space-based platforms (CloudScat.jl 1.0). Geoscientific Model Development, 2020, 13, 5549-5566.	3.6	20
30	On the Highâ€Energy Spectral Component and Fine Time Structure of Terrestrial Gamma Ray Flashes. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7484-7497.	3.3	19
31	Observations of Asymmetric Lobe Convection for Weak and Strong Tail Activity. Journal of Geophysical Research: Space Physics, 2019, 124, 9999-10017.	2.4	10
32	Separation and Quantification of Ionospheric Convection Sources: 1. A New Technique. Journal of Geophysical Research: Space Physics, 2019, 124, 6343-6357.	2.4	9
33	Separation and Quantification of Ionospheric Convection Sources: 2. The Dipole Tilt Angle Influence on Reverse Convection Cells During Northward IMF. Journal of Geophysical Research: Space Physics, 2019, 124, 6182-6194.	2.4	13
34	Gamma Ray Glow Observations at 20â€km Altitude. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7236-7254.	3.3	30
35	The Modular X- and Gamma-Ray Sensor (MXGS) of the ASIM Payload on the International Space Station. Space Science Reviews, 2019, 215, 1.	8.1	42
36	The ASIM Mission on the International Space Station. Space Science Reviews, 2019, 215, 1.	8.1	93

#	Article	IF	CITATIONS
37	The First Terrestrial Electron Beam Observed by the Atmosphereâ€Space Interactions Monitor. Journal of Geophysical Research: Space Physics, 2019, 124, 10497-10511.	2.4	8
38	First 10 Months of TGF Observations by ASIM. Journal of Geophysical Research D: Atmospheres, 2019, 124, 14024-14036.	3.3	52
39	Observationally Weak TGFs in the RHESSI Data. Journal of Geophysical Research D: Atmospheres, 2019, 124, 287-298.	3.3	10
40	Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs. Journal of Geophysical Research D: Atmospheres, 2018, 123, 139-159.	3.3	11
41	How the IMF <i>B_y</i> Induces a Local <i>B_y</i> Component During Northward IMF <i>B_z</i> and Characteristic Timescales. Journal of Geophysical Research: Space Physics, 2018, 123, 3333-3348.	2.4	27
42	Interplanetary Magnetic Field <i>B_x</i> Component Influence on Horizontal and Fieldâ€Aligned Currents in the Ionosphere. Journal of Geophysical Research: Space Physics, 2018, 123, 3360-3379.	2.4	12
43	Evolution of Asymmetrically Displaced Footpoints During Substorms. Journal of Geophysical Research: Space Physics, 2018, 123, 10,030.	2.4	19
44	The asymmetric geospace as displayed during the geomagnetic storm on 17ÂAugustÂ2001. Annales Geophysicae, 2018, 36, 1577-1596.	1.6	18
45	Evaluation of Monte Carlo tools for high-energy atmospheric physics II: relativistic runaway electron avalanches. Geoscientific Model Development, 2018, 11, 4515-4535.	3.6	20
46	Xâ€ ғ ay Emissions in a Multiscale Fluid Model of a Streamer Discharge. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6935-6953.	3.3	14
47	Inâ€Flight Observation of Positron Annihilation by ILDAS. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8074-8090.	3.3	9
48	Observations of Asymmetries in Ionospheric Return Flow During Different Levels of Geomagnetic Activity. Journal of Geophysical Research: Space Physics, 2018, 123, 4638-4651.	2.4	19
49	Timescales of Dayside and Nightside Fieldâ€Aligned Current Response to Changes in Solar Windâ€Magnetosphere Coupling. Journal of Geophysical Research: Space Physics, 2018, 123, 7307-7319.	2.4	16
50	The Detached Auroras Induced by the Solar Wind Pressure Enhancement in Both Hemispheres From Imaging and In Situ Particle Observations. Journal of Geophysical Research: Space Physics, 2018, 123, 3170-3182.	2.4	10
51	Northâ€south asymmetries in cold plasma density in the magnetotail lobes: Cluster observations. Journal of Geophysical Research: Space Physics, 2017, 122, 136-149.	2.4	26
52	Magnetospheric response and reconfiguration times following IMF <i>B_y</i> reversals. Journal of Geophysical Research: Space Physics, 2017, 122, 417-431.	2.4	35
53	Constraints to do realistic modeling of the electric field ahead of the tip of a lightning leader. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8120-8134.	3.3	20
54	Overview of Solar Wind–Magnetosphere–Ionosphere–Atmosphere Coupling and the Generation of Magnetospheric Currents. Space Science Reviews, 2017, 206, 547-573.	8.1	105

NIKOLAI OSTGAARD

0

#	Article	IF	CITATIONS
55	Dayside and nightside magnetic field responses at 780Âkm altitude to dayside reconnection. Journal of Geophysical Research: Space Physics, 2017, 122, 1670-1689.	2.4	18
56	Inâ€Flight Observation of Gamma Ray Glows by ILDAS. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12801-12811.	3.3	28
57	On the timing between terrestrial gamma ray flashes, radio atmospherics, and optical lightning emission. Journal of Geophysical Research: Space Physics, 2017, 122, 7734-7741.	2.4	12
58	Evaluation of Monte Carlo tools for high energy atmospheric physics. Geoscientific Model Development, 2016, 9, 3961-3974.	3.6	15
59	Relativistic electrons from sparks in the laboratory. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2939-2954.	3.3	15
60	Dynamic effects of restoring footpoint symmetry on closed magnetic field lines. Journal of Geophysical Research: Space Physics, 2016, 121, 3963-3977.	2.4	24
61	Radio emissions from double RHESSI TGFs. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8006-8022.	3.3	17
62	Pilot system development in metre-scale laboratory discharge. Journal Physics D: Applied Physics, 2016, 49, 425203.	2.8	32
63	The impact of sunlight on highâ€latitude equivalent currents. Journal of Geophysical Research: Space Physics, 2016, 121, 2715-2726.	2.4	37
64	Meterâ€scale spark Xâ€ray spectrum statistics. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11191-11202.	3.3	14
65	Birkeland current effects on high″atitude ground magnetic field perturbations. Geophysical Research Letters, 2015, 42, 7248-7254.	4.0	29
66	Observation of intrinsically bright terrestrial gamma ray flashes from the Mediterranean basin. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12143-12156.	3.3	26
67	How the IMF <i>B</i> _{<i>y</i>} induces a <i>B</i> _{<i>y</i>} component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres. Journal of Geophysical Research: Space Physics, 2015, 120, 9368-9384.	2.4	90
68	A new population of terrestrial gammaâ€ray flashes in the RHESSI data. Geophysical Research Letters, 2015, 42, 10,937.	4.0	17
69	Enhanced detection of terrestrial gammaâ€ray flashes by AGILE. Geophysical Research Letters, 2015, 42, 9481-9487.	4.0	45
70	Intensity asymmetries in the dusk sector of the poleward auroral oval due to IMF <i>B</i> _{<i>x</i>} . Journal of Geophysical Research: Space Physics, 2014, 119, 9497-9507.	2.4	29
71	On the spatial scale of streamers. , 2014, , .		1

First simultaneous observations of optical lightning and terrestrial gamma flash from space. , 2014, , .

5

#	Article	IF	CITATIONS
73	Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4. Journal of Geophysical Research: Space Physics, 2014, 119, 9174-9191.	2.4	35
74	An altitude and distance correction to the source fluence distribution of TGFs. Journal of Geophysical Research: Space Physics, 2014, 119, 8698-8704.	2.4	7
75	Energy transfer and flow in the solar windâ€magnetosphereâ€ionosphere system: A new coupling function. Journal of Geophysical Research: Space Physics, 2013, 118, 5659-5672.	2.4	39
76	Simultaneous observations of optical lightning and terrestrial gamma ray flash from space. Geophysical Research Letters, 2013, 40, 2423-2426.	4.0	54
77	On the nonâ€conjugacy of nightside aurora and their generator mechanisms. Journal of Geophysical Research: Space Physics, 2013, 118, 3394-3406.	2.4	27
78	How simulated fluence of photons from terrestrial gamma ray flashes at aircraft and balloon altitudes depends on initial parameters. Journal of Geophysical Research: Space Physics, 2013, 118, 2333-2339.	2.4	10
79	BGO front-end electronics and signal processing in the MXGS instrument for the ASIM mission. , 2012, , .		Ο
80	Connecting the terrestrial gammaâ€ray flash source strength and observed fluence distributions. Journal of Geophysical Research, 2012, 117, .	3.3	7
81	The true fluence distribution of terrestrial gamma flashes at satellite altitude. Journal of Geophysical Research, 2012, 117, .	3.3	54
82	A new method reveals more TGFs in the RHESSI data. Geophysical Research Letters, 2012, 39, .	4.0	41
83	Estimating the capture and loss of cold plasma from ionospheric outflow. Journal of Geophysical Research, 2012, 117, .	3.3	52
84	Changes in the magnetotail configuration before nearâ€Earth reconnection. Journal of Geophysical Research, 2012, 117, .	3.3	18
85	Evolution of auroral asymmetries in the conjugate hemispheres during two substorms. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	26
86	Statistics of plasma sheet convection. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	33
87	Assessing the power law distribution of TGFs. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	28
88	Confining the angular distribution of terrestrial gamma ray flash emission. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	49
89	Terrestrial gamma-ray flash electron beam geometry, fluence, and detection frequency. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	23
90	Earthward plasma sheet flows during substorm phases. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	55

6

#	Article	IF	CITATIONS
91	Interhemispherical asymmetry of substorm onset locations and the interplanetary magnetic field. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	39
92	Terrestrial Gamma-ray flash intensity distribution. , 2011, , .		0
93	Effects of dead time losses on terrestrial gamma ray flash measurements with the Burst and Transient Source Experiment. Journal of Geophysical Research, 2010, 115, .	3.3	58
94	Interhemispheric observations of emerging polar cap asymmetries. Journal of Geophysical Research, 2010, 115, .	3.3	23
95	Seasonal and interplanetary magnetic field–dependent polar cap contraction during substorm expansion phase. Journal of Geophysical Research, 2010, 115, .	3.3	12
96	Small and mesoâ€scale properties of a substorm onset auroral arc. Journal of Geophysical Research, 2010, 115, .	3.3	29
97	X-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND. , 2009, , 229-244.		3
98	The Space Science Suitcase—Instruments for Exploring Near-Earth Space from the Classroom. Earth, Moon and Planets, 2009, 104, 73-75.	0.6	0
99	Asymmetric auroral intensities in the Earth's Northern and Southern hemispheres. Nature, 2009, 460, 491-493.	27.8	77
100	Can magnetotail reconnection produce the auroral intensities observed in the conjugate ionosphere?. Journal of Geophysical Research, 2009, 114, .	3.3	13
101	Reconnection Hall current system observed in the magnetotail and in the ionosphere. Geophysical Research Letters, 2009, 36, .	4.0	2
102	Production altitude and time delays of the terrestrial gamma flashes: Revisiting the Burst and Transient Source Experiment spectra. Journal of Geophysical Research, 2008, 113, .	3.3	116
103	Persistent global proton aurora caused by high solar wind dynamic pressure. Journal of Geophysical Research, 2008, 113, .	3.3	19
104	The Hall current system revealed as a statistical significant pattern during fast flows. Annales Geophysicae, 2008, 26, 3429-3437.	1.6	2
105	Simultaneous observations of magnetotail reconnection and bright X-ray aurora on 2 October 2002. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	13
106	Thermospheric nitric oxide at higher latitudes: Model calculations with auroral energy input. Journal of Geophysical Research, 2007, 112, .	3.3	9
107	X-rays from solar system objects. Planetary and Space Science, 2007, 55, 1135-1189.	1.7	119
108	Auroral conjugacy studies based on global imaging. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 249-255.	1.6	42

#	Article	IF	CITATIONS
109	Cluster observations of a field aligned current at the dawn flank of a bursty bulk flow. Annales Geophysicae, 2007, 25, 1405-1415.	1.6	43
110	Height profiles of the ionospheric electron density derived using space-based remote sensing of UV and X ray emissions and EISCAT radar data: A ground-truth experiment. Journal of Geophysical Research, 2006, 111, .	3.3	7
111	Comparisons of electron energy deposition derived from observations of lower thermospheric nitric oxide and from X-ray bremsstrahlung measurements. Journal of Geophysical Research, 2006, 111, .	3.3	3
112	Energetics of a substorm on 15 August, 2001: Comparing empirical methods and a global MHD simulation. Advances in Space Research, 2005, 36, 1825-1829.	2.6	7
113	Estimates of magnetotail reconnection rate based on IMAGE FUV and EISCAT measurements. Annales Geophysicae, 2005, 23, 123-134.	1.6	18
114	Assessment of ionospheric Joule heating by GUMICS-4 MHD simulation, AMIE, and satellite-based statistics: towards a synthesis. Annales Geophysicae, 2005, 23, 2051-2068.	1.6	47
115	On the motion of dayside auroras caused by a solar wind pressure pulse. Annales Geophysicae, 2005, 23, 509-521.	1.6	19
116	Ionospheric conductances derived from satellite measurements of auroral UV and X-ray emissions, and ground-based electromagnetic data: a comparison. Annales Geophysicae, 2005, 23, 343-358.	1.6	12
117	Mesoscale ionospheric electrodynamics of omega bands determined from ground-based electromagnetic and satellite optical observations. Annales Geophysicae, 2005, 23, 325-342.	1.6	26
118	Simultaneous observations of the auroral ovals in both hemispheres under varying conditions. Geophysical Research Letters, 2005, 32, .	4.0	25
119	Medium energy pitch angle distribution during substorm injected electron clouds. Geophysical Research Letters, 2005, 32, .	4.0	4
120	Observations and model predictions of substorm auroral asymmetries in the conjugate hemispheres. Geophysical Research Letters, 2005, 32, .	4.0	62
121	Statistical pitch angle properties of substorm-injected electron clouds and their relation to dawnside energetic electron precipitation. Journal of Geophysical Research, 2005, 110, .	3.3	13
122	Simultaneous imaging of the reconnection spot in the opposite hemispheres during northward IMF. Geophysical Research Letters, 2005, 32, .	4.0	26
123	Effects of energetic electrons on the electrodynamics in the ionosphere. Annales Geophysicae, 2004, 22, 475-496.	1.6	16
124	Pi2-pulsations observed in energetic electron precipitation and magnetic field in association with a substorm surge. Annales Geophysicae, 2004, 22, 2097-2105.	1.6	4
125	Seasonal dependence of localized, high-latitude dayside aurora (HiLDA). Journal of Geophysical Research, 2004, 109, .	3.3	24
126	Interplanetary magnetic field control of the location of substorm onset and auroral features in the conjugate hemispheres. Journal of Geophysical Research, 2004, 109, .	3.3	72

NIKOLAI OSTGAARD

#	Article	IF	CITATIONS
127	Observations of non-conjugate theta aurora. Geophysical Research Letters, 2003, 30, .	4.0	50
128	Conjugate high-intensity energetic electron precipitation at high latitude. Annales Geophysicae, 2003, 21, 1443-1455.	1.6	3
129	Instantaneous ionospheric global conductance maps during an isolated substorm. Annales Geophysicae, 2002, 20, 1181-1191.	1.6	31
130	Clobal multispectral auroral imaging of an isolated substorm. Geophysical Research Letters, 2000, 27, 637-640.	4.0	4
131	Simultaneous measurements of X-rays and electrons during a pulsating aurora. Annales Geophysicae, 1998, 16, 148-160.	1.6	9
132	Auroral Signatures of the Dynamic Plasma Sheet. Geophysical Monograph Series, 0, , 317-336.	0.1	15
133	Auroral Asymmetries in the Conjugate Hemispheres and Interhemispheric Currents. Geophysical Monograph Series, 0 99-112	0.1	16