Alberto Frache

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3627333/publications.pdf

Version: 2024-02-01

91712 70961 5,754 141 41 69 citations h-index g-index papers 147 147 147 5805 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochimica Acta, 2006, 440, 36-42.	1.2	336
2	Polypropylene–polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer, 2005, 46, 7855-7866.	1.8	300
3	Crystallization kinetics of poly(lactic acid)-talc composites. EXPRESS Polymer Letters, 2011, 5, 849-858.	1.1	283
4	Thermal and combustion behaviour of layered silicate–epoxy nanocomposites. Polymer Degradation and Stability, 2005, 90, 354-362.	2.7	161
5	Polylactic Acid and Polylactic Acid-Based Nanocomposite Photooxidation. Biomacromolecules, 2010, 11, 2919-2926.	2.6	144
6	The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene–vinyl acetate copolymer and polystyrene. Polymer, 2007, 48, 6532-6545.	1.8	139
7	Materials engineering for surface-confined flame retardancy. Materials Science and Engineering Reports, 2014, 84, 1-20.	14.8	139
8	Novel phosphorous–nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene. Polymer Degradation and Stability, 2013, 98, 297-305.	2.7	126
9	Catalytic charring–volatilization competition in organoclay nanocomposites. Polymer Degradation and Stability, 2007, 92, 425-436.	2.7	122
10	New nanocomposites constituted of polyethylene and organically modified ZnAl-hydrotalcites. Polymer Degradation and Stability, 2005, 90, 586-590.	2.7	115
11	Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties. Polymer Degradation and Stability, 2010, 95, 2093-2100.	2.7	112
12	Polypropylene metal functionalised POSS nanocomposites: A study by thermogravimetric analysis. Polymer Degradation and Stability, 2006, 91, 1064-1070.	2.7	106
13	Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. European Polymer Journal, 2007, 43, 3222-3235.	2.6	105
14	Optimization of the procedure to burn textile fabrics by cone calorimeter: Part I. Combustion behavior of polyester. Fire and Materials, 2011, 35, 397-409.	0.9	97
15	Rice husk as bio-source of silica: preparation and characterization of PLA–silica bio-composites. RSC Advances, 2014, 4, 54703-54712.	1.7	92
16	ALPO-34 and SAPO-34 synthesized by using morpholine as templating agent. FTIR and FT-Raman studies of the host–guest and guest–guest interactions within the zeolitic framework. Microporous and Mesoporous Materials, 1999, 30, 145-153.	2.2	91
17	Layer by Layer coatings assembled through dipping, vertical or horizontal spray for cotton flame retardancy. Carbohydrate Polymers, 2013, 92, 114-119.	5.1	83
18	Polypropylene-POSS Nanocomposites: Morphology and Crystallization Behaviour. Macromolecular Symposia, 2006, 234, 59-67.	0.4	81

#	Article	IF	Citations
19	Structural Characterization of Siliceous Spicules from Marine Sponges. Biophysical Journal, 2004, 86, 526-534.	0.2	79
20	Cyclodextrin nanosponges as novel green flame retardants for PP, LLDPE and PA6. Carbohydrate Polymers, 2012, 88, 1387-1394.	5.1	77
21	Selective bacterial colonization processes on polyethylene waste samples in an abandoned landfill site. Scientific Reports, 2019, 9, 14138.	1.6	77
22	Flame retardancy properties of \hat{l}_{\pm} -zirconium phosphate based composites. Polymer Degradation and Stability, 2010, 95, 1928-1933.	2.7	74
23	Influence of surface activation by plasma and nanoparticle adsorption on the morphology, thermal stability and combustion behavior of PET fabrics. European Polymer Journal, 2011, 47, 893-902.	2.6	73
24	Flame Retardancy of Polyester Fabrics Treated by Spray-Assisted Layer-by-Layer Silica Architectures. Industrial & Engineering Chemistry Research, 2013, 52, 9544-9550.	1.8	71
25	Poly(lactic acid)-Based Composites Containing Natural Fillers: Thermal, Mechanical and Barrier Properties. Journal of Polymers and the Environment, 2014, 22, 88-98.	2.4	64
26	Cellulose extracted from rice husk as filler for poly(lactic acid): preparation and characterization. Cellulose, 2014, 21, 1813-1821.	2.4	58
27	Is it Possible to Mechanical Recycle the Materials of the Disposable Filtering Masks?. Polymers, 2020, 12, 2726.	2.0	58
28	Role of \hat{l}^2 -cyclodextrin nanosponges in polypropylene photooxidation. Carbohydrate Polymers, 2011, 86, 127-135.	5.1	57
29	Influence of compatibilizer degradation on formation and properties of PA6/organoclay nanocomposites. Polymer Degradation and Stability, 2007, 92, 370-378.	2.7	53
30	Sodium montmorillonite modified with methacryloxy and vinylsilanes: Influence of silylation on the morphology of clay/unsaturated polyester nanocomposites. Applied Clay Science, 2015, 114, 550-557.	2.6	53
31	Plasticizers, antioxidants and reinforcement fillers from hazelnut skin and cocoa by-products: Extraction and use in PLA and PP. Polymer Degradation and Stability, 2014, 108, 297-306.	2.7	52
32	Heat Induced Structure Modifications in Polymer-Layered Silicate Nanocomposites. Macromolecular Materials and Engineering, 2004, 289, 783-786.	1.7	50
33	Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate. Carbohydrate Polymers, 2015, 119, 78-84.	5.1	50
34	Fate of Biodegradable Polymers Under Industrial Conditions for Anaerobic Digestion and Aerobic Composting of Food Waste. Journal of Polymers and the Environment, 2020, 28, 2539-2550.	2.4	49
35	The identity of titanium centres in microporous aluminophosphates compared with Ti-MCM-41 mesoporous catalyst and titanosilsesquioxane dimer molecular complex: a spectroscopy study. Journal of Molecular Catalysis A, 2003, 204-205, 483-489.	4.8	46
36	Thermal stability of high density polyethylene–fumed silica nanocomposites. Journal of Thermal Analysis and Calorimetry, 2012, 109, 863-873.	2.0	46

#	Article	IF	CITATIONS
37	Natural wastes as particle filler for poly(lactic acid)-based composites. Journal of Composite Materials, 2019, 53, 783-797.	1.2	46
38	FDM Printability of PLA Based-Materials: The Key Role of the Rheological Behavior. Polymers, 2022, 14, 1754.	2.0	46
39	Hydrotalcite and nanometric silica as finishing additives to enhance the thermal stability and flame retardancy of cotton. Cellulose, 2011, 18, 179-190.	2.4	45
40	Preparation and characterisation of hydrotalcite/carboxyadamantane intercalation compounds as fillers of polymeric nanocomposites. Journal of Materials Chemistry, 2007, 17, 1079-1086.	6.7	44
41	Multilayer cotton fabric bio-composites based on PLA and PHB copolymer for industrial load carrying applications. Composites Part B: Engineering, 2019, 163, 761-768.	5.9	44
42	On the hydrothermal stability of CuAPSO-34 microporous catalysts for N2O decomposition: a comparison with CuZSM-5. Journal of Catalysis, 2003, 217, 100-106.	3.1	43
43	A Comparative Analysis of Nanoparticle Adsorption as Fire-Protection Approach for Fabrics. Polymers, 2015, 7, 47-68.	2.0	42
44	Epoxy coupling agent for PLA and PHB copolymer-based cotton fabric bio-composites. Composites Part B: Engineering, 2018, 148, 188-197.	5.9	42
45	Sustainable and High Performing Biocomposites with Chitosan/Sepiolite Layer-by-Layer Nanoengineered Interphases. ACS Sustainable Chemistry and Engineering, 2018, 6, 9601-9605.	3.2	42
46	PLA/PHB Blends: Biocompatibilizer Effects. Polymers, 2019, 11, 1416.	2.0	40
47	Synergistic effects of zinc borate and aluminium trihydroxide on flammability behaviour of aerospace epoxy system. EXPRESS Polymer Letters, 2009, 3, 376-384.	1.1	40
48	Fireâ€retardant poly(ethylene terephthalate) by combination of expandable graphite and layered clays for plastics and textiles. Fire and Materials, 2011, 35, 383-396.	0.9	39
49	Thermo-mechanical properties enhancement of bio-polyamides (PA10.10 and PA6.10) by using rice husk ash and nanoclay. Composites Part A: Applied Science and Manufacturing, 2016, 81, 193-201.	3.8	38
50	Layer-by-Layer nanostructured interphase produces mechanically strong and flame retardant bio-composites. Composites Part B: Engineering, 2020, 200, 108310.	5.9	38
51	The effect of mechanical recycling on the microstructure and properties of PA66 composites reinforced with carbon fibers. Journal of Applied Polymer Science, 2015, 132, .	1.3	37
52	Acid SAPO-34 Catalysts for Oxidative Dehydrogenation of Ethane. Journal of Catalysis, 2002, 208, 479-484.	3.1	36
53	Poly (butylensuccinate co-adipate)-thermoplastic starch nanocomposite blends. Carbohydrate Polymers, 2010, 82, 802-808.	5.1	36
54	Optimization of the procedure to burn textile fabrics by cone calorimeter: part II. Results on nanoparticleâ€finished polyester. Fire and Materials, 2012, 36, 527-536.	0.9	36

#	Article	IF	CITATIONS
55	Comparative study of filler influence on polylactide photooxidation. EXPRESS Polymer Letters, 2013, 7, 431-442.	1.1	34
56	Spectroscopic characterisation of microporous aluminophosphate materials with potential application in environmental catalysis. Catalysis Today, 2003, 77, 371-384.	2.2	33
57	Advanced biobased and rigid foams, based on urethane-modified isocyanurate from oxypropylated gambier tannin polyol. Polymer Degradation and Stability, 2016, 132, 62-68.	2.7	33
58	Mechanical recycling of an end-of-life automotive composite component. Sustainable Materials and Technologies, 2020, 23, e00143.	1.7	32
59	Title is missing!. Topics in Catalysis, 2003, 22, 53-57.	1.3	31
60	On revealing the effect of alkaline lignin and ammonium polyphosphate additives on fire retardant properties of sustainable zein-based composites. Polymer Degradation and Stability, 2016, 134, 115-125.	2.7	31
61	Catalytic DeNO activity of cobalt and copper ions in microporous MeALPO-34 and MeAPSO-34. Catalysis Today, 2002, 75, 359-365.	2.2	30
62	A novel use of Tiâ€POSS as initiator of L â€lactide ringâ€opening polymerization. Journal of Polymer Science Part A, 2011, 49, 4794-4799.	2.5	30
63	Bulk vs. surface flame retardancy of fully bio-based polyamide 10,10. RSC Advances, 2015, 5, 39424-39432.	1.7	30
64	Hemp hurd and alfalfa as particle filler to improve the thermoâ€mechanical and fire retardant properties of poly(3â€hydroxybutyrateâ€coâ€3â€hydroxyhexanoate). Polymer Composites, 2019, 40, 3429-3437	2.3	30
65	Designing 3D printable polypropylene: Material and process optimisation through rheology. Additive Manufacturing, 2021, 40, 101944.	1.7	30
66	Comprehensive spectral and instrumental approaches for the easy monitoring of features and purity of different carbon nanostructures for nanocomposite applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 131, 72-82.	1.7	29
67	Interdigitated crystalline MMT–MCA in polyamide 6. RSC Advances, 2017, 7, 861-869.	1.7	29
68	All Natural High-Density Fiber- and Particleboards from Hemp Fibers or Rice Husk Particles. Journal of Polymers and the Environment, 2018, 26, 1652-1660.	2.4	29
69	Thermal properties of epoxy resin nanocomposites based on hydrotalcites. Polymer Degradation and Stability, 2011, 96, 164-169.	2.7	28
70	Effect of clay silylation on curing and mechanical and thermal properties of unsaturated polyester/montmorillonite nanocomposites. Journal of Physics and Chemistry of Solids, 2015, 87, 9-15.	1.9	28
71	Thermal and UV aging of polypropylene stabilized by wine seeds wastes and their extracts. Polymer Degradation and Stability, 2019, 165, 49-59.	2.7	28
72	Fiber diffraction study of spicules from marine sponges. Microscopy Research and Technique, 2003, 62, 378-381.	1,2	27

#	Article	IF	CITATIONS
73	NO and CO Adsorption on Over-Exchanged Cu-MCM-22:Â A FTIR Study. Langmuir, 2002, 18, 6875-6880.	1.6	26
74	Clay based polymeric composites: Preparation and quality characterization. Materials Chemistry and Physics, 2010, 123, 372-377.	2.0	26
75	Combined Single-Crystal X-ray Diffraction and FTIR Study of Morpholiniumâ^Water Molecular Complexes Embedded in a Chabasite Network. Journal of Physical Chemistry B, 2003, 107, 9655-9661.	1.2	24
76	Development of Pressure-Responsive PolyPropylene and Biochar-Based Materials. Micromachines, 2020, 11, 339.	1.4	24
77	A novel, low surface charge density, anionically modified montmorillonite for polymer nanocomposites. RSC Advances, 2017, 7, 5980-5988.	1.7	23
78	Layer by Layer-functionalized rice husk particles: A novel and sustainable solution for particleboard production. Materials Today Communications, 2017, 13, 92-101.	0.9	23
79	Rheology, Morphology and Thermal Properties of a PLA/PHB/Clay Blend Nanocomposite: The Influence of Process Parameters. Journal of Polymers and the Environment, 2022, 30, 102-113.	2.4	23
80	Anaerobic digestion and aerobic composting of rigid biopolymers in bio-waste treatment: fate and effects on the final compost. Bioresource Technology, 2022, 351, 126934.	4.8	23
81	Intercalation degree in PP/organoclay nanocomposites: role of surfactant structure. Polymers for Advanced Technologies, 2008, 19, 547-555.	1.6	22
82	Effect of heating of organo-montmorillonites under different atmospheres. Applied Clay Science, 2009, 45, 185-193.	2.6	22
83	Evaluation of nonconventional additives as fire retardants on polyamide 6,6: Phosphorousâ€based master batch, αâ€zirconium dihydrogen phosphate, and βâ€cyclodextrin based nanosponges. Journal of Applied Polymer Science, 2012, 123, 3545-3555.	1.3	21
84	Combustion characteristics of cellulosic loose fibres. Fire and Materials, 2013, 37, 482-490.	0.9	21
85	Thermo-oxidative ageing of an organo-modified clay and effects on the properties of PA6 based nanocomposites. Thermochimica Acta, 2013, 552, 37-45.	1.2	21
86	Title is missing!. Topics in Catalysis, 2003, 22, 95-99.	1.3	19
87	Preparation and spectroscopic characterisation of intercalation products of clay and of clay–polypropylene composites with rhodamine B. Journal of Physics and Chemistry of Solids, 2006, 67, 909-914.	1.9	19
88	Thermal behavior of thermoplastic polymer nanocomposites containing graphene nanoplatelets. Journal of Applied Polymer Science, 2017, 134, .	1.3	18
89	Improving the Flame Retardant Efficiency of Layer by Layer Coatings Containing Deoxyribonucleic Acid by Post-Diffusion of Hydrotalcite Nanoparticles. Materials, 2017, 10, 709.	1.3	18
90	Reuse and Valorisation of Hemp Fibres and Rice Husk Particles for Fire Resistant Fibreboards and Particleboards. Journal of Polymers and the Environment, 2018, 26, 3731-3744.	2.4	18

#	Article	IF	Citations
91	Evaluation of nanocomposites containing graphene nanoplatelets: Mechanical properties and combustion behavior. Polymer Engineering and Science, 2019, 59, 2062-2071.	1.5	18
92	Effect of organoclay impurities on mechanical properties of EVA-layered silicate nanocomposites. E-Polymers, 2006, 6, .	1.3	17
93	Dielectric Spectroscopy of PP/MWCNT Nanocomposites: Relationship with Crystalline Structure and Injection Molding Condition. Nanomaterials, 2021, 11, 550.	1.9	17
94	Preparation of nanocomposites based on PP and PA6 by direct injection molding. Polymer Engineering and Science, 2008, 48, 2373-2381.	1.5	16
95	Influence of MWNT on Polypropylene and Polyethylene Photooxidation. Macromolecular Symposia, 2011, 301, 16-22.	0.4	15
96	On the activity and hydrothermal stability of CuMCM-22 in the decomposition of nitrogen oxides: a comparison with CuZSM-5. Catalysis Communications, 2004, 5, 191-194.	1.6	14
97	Effect of Injection Molding Conditions on Crystalline Structure and Electrical Resistivity of PP/MWCNT Nanocomposites. Polymers, 2020, 12, 1685.	2.0	14
98	Reactive extrusion of sol-gel silica as fire retardant synergistic additive in ethylene-vinyl acetate copolymer (EVA) composites. Polymer Degradation and Stability, 2019, 167, 259-268.	2.7	13
99	Investigation of Different Types of Biochar on the Thermal Stability and Fire Retardance of Ethylene-Vinyl Acetate Copolymers. Polymers, 2021, 13, 1256.	2.0	13
100	Mechanical and Barrier Properties Enhancement in Film Extruded Bioâ€Polyamides With Modified Nanoclay. Polymer Composites, 2019, 40, 2617-2628.	2.3	12
101	Thermomechanical improvement of glycerol plasticized maize starch with high loading of cellulose, flax and talc fillers. Polymer International, 2016, 65, 955-962.	1.6	11
102	Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites. Journal of Nanoscience and Nanotechnology, 2018, 18, 1468-1473.	0.9	11
103	Platinum nanoparticle intercalated montmorillonite to enhance the char formation of polyamide 6 nanocomposites. Journal of Materials Chemistry, 2010, 20, 9550.	6.7	10
104	Aging of EVA/organically modified clay: Effect on dispersion, distribution and combustion behavior. Polymer Degradation and Stability, 2014, 107, 184-187.	2.7	10
105	Development of disposable filtering mask recycled materials: Impact of blending with recycled mixed polyolefin and their aging stability. Resources, Conservation and Recycling, 2022, 177, 105974.	5.3	10
106	A comparison of the processes involved in the direct synthesis of GdSr2RuCu2Ox and NdSr2RuCu2Oy perovskites. Physica C: Superconductivity and Its Applications, 2004, 408-410, 193-194.	0.6	9
107	Temperature-Induced Transformations in CoAPO-34 Molecular Sieve:Â A Combined In Situ X-ray Diffraction and FTIR Study. Journal of Physical Chemistry B, 2005, 109, 13483-13492.	1.2	9
108	Thermal and fire retardancy studies of clayâ€modified unsaturated polyester/glass fiber composites. Polymer Composites, 2017, 38, 2743-2752.	2.3	9

#	Article	IF	CITATIONS
109	Interdigitated crystalline <scp>MMTâ€MCA</scp> : Preparation and characterization. Polymers for Advanced Technologies, 2018, 29, 22-29.	1.6	9
110	Poly-1-butene/clay nanocomposite effect of compatibilizers on thermal and fire retardant properties. Polymers for Advanced Technologies, 2006, 17, 246-254.	1.6	8
111	The effect of annealing conditions on the intercalation and exfoliation of layered silicates in polymer nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2476-2483.	2.4	8
112	Designing a 3D printable polypropylene-based material from after use recycled disposable masks. Materials Today Communications, 2022, 32, 103997.	0.9	8
113	MWNT Surface Self-Assembling in Fire Retardant Polyethylene-Carbon nanotubes nanocomposites. E-Polymers, 2008, 8, .	1.3	7
114	Simple Method for the Preparation of Composites Based on PA6 and Partially Exfoliated Graphite. Journal of Nanomaterials, 2012, 2012, 1-5.	1.5	7
115	One-pot synthesis of hexadecyl modified layered magnesium silicate and polyethylene based nanocomposite preparation. Applied Clay Science, 2013, 80-81, 320-325.	2.6	7
116	Rheological behavior and morphology of poly(lactic acid)/lowâ€density polyethylene blends based on virgin and recycled polymers: Compatibilization with natural surfactants. Journal of Applied Polymer Science, 2021, 138, 50590.	1.3	7
117	SYNTHESIS, MORPHOLOGY AND STRUCTURAL PROPERTIES OF (GD,ND)SR2RUCU2O8 SAMPLES. International Journal of Modern Physics B, 2003, 17, 899-904.	1.0	6
118	Improving Fire Performances of PEAL: More Second-Life Options for Recycled Tetra Pak®. Polymers, 2020, 12, 2357.	2.0	6
119	Flame retardant potential of Tetra Pak \hat{A}^{\otimes} -derived biochar for ethylene-vinyl-acetate copolymers. Composites Part C: Open Access, 2022, 8, 100252.	1.5	6
120	Synthesis, Spectroscopic and Catalytic Properties of Cobalt and Copper Ions in Aluminophosphates with Chabasite-Like Structure. Studies of the NO Reactivity. Studies in Surface Science and Catalysis, 2001, , 269-277.	1.5	5
121	Spectroscopic and catalytic studies on Cu-MCM-22: Effect of copper loading. Studies in Surface Science and Catalysis, 2002, 142, 343-350.	1.5	5
122	Bentonite-Based Organoclays as Innovative Flame Retardants Agents for SBS Copolymer. Journal of Nanoscience and Nanotechnology, 2008, 8, 6316-6324.	0.9	5
123	Multi-component flame resistant coating techniques for textiles. , 2013, , 68-93.		5
124	Formation and oxygen diffusion barrier properties of fish gelatin/natural sodium montmorillonite clay self-assembled multilayers onto the biopolyester surface. RSC Advances, 2015, 5, 61465-61480.	1.7	5
125	Bio-based PA5.10 for Industrial Applications: Improvement of Barrier and Thermo-mechanical Properties with Rice Husk Ash and Nanoclay. Journal of Polymers and the Environment, 2019, 27, 2213-2223.	2.4	5
126	Effect of Filler Morphology on the Electrical and Thermal Conductivity of PP/Carbon-Based Nanocomposites. Journal of Composites Science, 2021, 5, 196.	1.4	5

#	Article	IF	CITATIONS
127	Cu-MCM-22 zeolite: A combined X-ray powder diffraction and computational study of the local structure of extra-framework copper ions. Studies in Surface Science and Catalysis, 2005, , 415-426.	1.5	4
128	30-P-31-NOx reactivity on microporous MeAPOs. spectroscopic and catalytic studies. Studies in Surface Science and Catalysis, 2001, , 328.	1.5	3
129	Structure and Morphology of NdSr2RuCu2Oy and GdSr2RuCu2Oz. Lecture Notes in Physics, 2002, , 205-221.	0.3	3
130	Combined Fire Retardant Action of Phosphonated Structures and Clay Dispersion in Epoxy Resin. ACS Symposium Series, 2005, , 21-35.	0.5	3
131	Morphology and electrical properties of injection-molded PP carbon-based nanocomposites. AIP Conference Proceedings, 2017, , .	0.3	3
132	Structural characterization of Co- and Si-substituted AIPO-34 synthesized in the presence of morpholine. Studies in Surface Science and Catalysis, 2002, 142, 151-157.	1.5	2
133	iPP Crystallization: Micro and Nano Fillers Effects. , 2010, , .		2
134	PET Foams Surface Treated with Graphene Nanoplatelets: Evaluation of Thermal Resistance and Flame Retardancy. Polymers, 2021, 13, 501.	2.0	2
135	The stability of H-MCM-22 under severe thermal conditions. Studies in Surface Science and Catalysis, 2004, , 1426-1430.	1.5	1
136	The transformation of lamellar AIPO-kanemite into chabazite-type CAL-1 3D molecular sieve: a structural study. Studies in Surface Science and Catalysis, 2005, 158, 311-318.	1.5	1
137	Textile Flame Retardancy Through Surface-Assembled Nanoarchitectures. ACS Symposium Series, 2012, , 327-341.	0.5	1
138	Combustion behavior of polypropylene-based composites used in industrial plasticollar. Composite Interfaces, 2013, 20, 241-253.	1.3	1
139	Spectroscopic Characterization of Microporous Aluminophosphate Materials with Potential Application in Environmental Catalysis. ChemInform, 2003, 34, no.	0.1	0
140	13th International conference on fire retardant polymer materials, FRPM 11, Alessandria, Italy, 26–30 June 2011. Polymer Degradation and Stability, 2012, 97, 2480.	2.7	0
141	Effects of the Manufacturing Methods on the Mechanical Properties of a Medical-Grade Copolymer Poly(L-lactide-co-D,L-lactide) and Poly(L-lactide-co-ε-caprolactone) Blend. Materials, 2021, 14, 6381.	1.3	0