Kazuhiko Takai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3627218/publications.pdf

Version: 2024-02-01

223 papers 11,662 citations

25423 59 h-index 91 g-index

325 all docs 325 docs citations

325 times ranked

5968 citing authors

#	Article	IF	CITATIONS
1	Birch Reduction of Arenes Using Sodium Dispersion and DMI under Mild Conditions. Chemistry Letters, 2022, 51, 38-40.	0.7	9
2	A Transmetallation Pathway to a Dinuclear Chromium $\hat{l}\frac{1}{4}$ -Methylene Complex. Chemistry Letters, 2022, 51, 525-528.	0.7	0
3	A trinuclear chromium(iii) chlorocarbyne. Chemical Communications, 2021, 57, 5199-5202.	2.2	5
4	Structural elucidation of a methylenation reagent of esters: synthesis and reactivity of a dinuclear titanium(<scp>iii</scp>) methylene complex. Chemical Science, 2021, 12, 3509-3515.	3.7	3
5	Molybdenumâ€Catalyzed Deoxygenative Cyclization of Carbonyl Compounds for the Synthesis of Pyrido[2,1â€ <i>a</i>]isoindoles. Asian Journal of Organic Chemistry, 2021, 10, 753-756.	1.3	15
6	Halogen–sodium exchange enables efficient access to organosodium compounds. Communications Chemistry, 2021, 4, .	2.0	30
7	Chromium carbides and cyclopropenylidenes. Chemical Science, 2021, 12, 14281-14287.	3.7	5
8	Regioselective Sequential Silylation and Borylation of Aromatic Aldimines as a Strategy for Programming Synthesis of Multifunctionalized Benzene Derivatives. Organic Letters, 2020, 22, 316-321.	2.4	7
9	Cyclization of 5-alkynones with chromium alkylidene equivalents generated <i>in situ</i> from <i>gem</i> -dichromiomethanes. Chemical Communications, 2020, 56, 9711-9714.	2.2	6
10	Cyclization of 1,n-Enynes Initiated by the Addition Reaction of gem-Dichromiomethane Reagents to Alkynes. Organic Letters, 2020, 22, 3985-3988.	2.4	13
11	Rhenium-Catalyzed Cyclization via 1,2-lodine and 1,5-Hydrogen Migration for the Synthesis of 2-lodo-1 <i>H</i> -indenes. Organic Letters, 2019, 21, 6756-6760.	2.4	13
12	Mechanistic Insights into Rheniumâ€Catalyzed Regioselective Câ€Alkenylation of Phenols with Internal Alkynes. Chemistry - A European Journal, 2019, 25, 15189-15197.	1.7	8
13	Regioselective arene homologation through rhenium-catalyzed deoxygenative aromatization of 7-oxabicyclo[2.2.1]hepta-2,5-dienes. Chemical Communications, 2019, 55, 2332-2335.	2.2	26
14	Deoxygenative Insertion of Carbonyl Carbon into a C(sp ³)â€"H Bond: Synthesis of Indolines and Indoles. Journal of the American Chemical Society, 2019, 141, 9832-9836.	6.6	37
15	Rhenium-Catalyzed Regioselective <i>ortho</i> -Alkenylation and $[3 + 2 + 1]$ Cycloaddition of Phenols with Internal Alkynes. Organic Letters, 2019, 21, 3441-3445.	2.4	14
16	Organosodium compounds for catalytic cross-coupling. Nature Catalysis, 2019, 2, 297-303.	16.1	57
17	Lithiumâ€Free Synthesis of Sodium 2,2,6,6â€Tetramethylpiperidide and Its Synthetic Applications. Advanced Synthesis and Catalysis, 2019, 361, 3120-3123.	2.1	32
18	Regioselective Functionalization of 9,9-Dimethyl-9-silafluorenes by Borylation, Bromination, and Nitration. Journal of Organic Chemistry, 2019, 84, 5667-5676.	1.7	7

#	Article	IF	CITATIONS
19	Chromium-Mediated Stannylcyclopropanation of Alkenes with (Diiodomethyl)stannanes. Organic Letters, 2019, 21, 2668-2672.	2.4	13
20	Palladium-catalyzed double-bond migration of unsaturated hydrocarbons accelerated by tantalum chloride. Chemical Communications, 2019, 55, 2769-2772.	2.2	12
21	Unsymmetrical Difunctionalization of Two Different C–H Bonds in One Pot Under Transition-Metal Catalysis. Synthesis, 2019, 51, 40-54.	1.2	17
22	Iridiumâ€Catalyzed Sequential Silylation and Borylation of Heteroarenes Based on Regioselective Câ^'H Bond Activation. Angewandte Chemie, 2018, 130, 5945-5949.	1.6	8
23	Iridium atalyzed Sequential Silylation and Borylation of Heteroarenes Based on Regioselective Câ^'H Bond Activation. Angewandte Chemie - International Edition, 2018, 57, 5843-5847.	7.2	43
24	Amine-Promoted <i>anti</i> -Markovnikov Addition of 1,3-Dicarbonyl Compounds with Terminal Alkynes under Rhenium Catalysis. ACS Catalysis, 2018, 8, 5454-5459.	5.5	24
25	Capturing the Crystal Structure of the Key Species!. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 640-643.	0.0	0
26	Use of Cyclopropane as C1 Synthetic Unit by Directed Retro-Cyclopropanation with Ethylene Release. Journal of the American Chemical Society, 2018, 140, 15425-15429.	6.6	25
27	Catalytic Cleavage and Reformation of Ethereal Ïf-Bonds. Chemistry Letters, 2018, 47, 927-930.	0.7	7
28	Rheniumâ \in Catalyzed Construction of Polycyclic Hydrocarbon Frameworks by a Unique Cyclization of 1, <i>n</i> h<2.00 i>nclipses Initiated by 1,1â \in Difunctionalization with Carbon Nucleophiles. Angewandte Chemie - International Edition, 2017, 56, 5862-5866.	7.2	40
29	Rhodiumâ€Catalyzed Silylative and Germylative Cyclization with Dehydrogenation Leading to 9â€Sila―and 9â€Germafluorenes: A Combined Experimental and Computational Mechanistic Study. Chemistry - A European Journal, 2017, 23, 10861-10870.	1.7	34
30	Iridium-catalyzed Dehydrogenative Dimerization of Benzylmethylsilanes via Silylation of C(sp ³)â€"H Bonds Adjacent to a Silicon Atom. Chemistry Letters, 2017, 46, 1044-1047.	0.7	19
31	Synthesis of Borylcyclopropanes by Chromium-Promoted Cyclopropanation of Unactivated Alkenes. Organic Letters, 2017, 19, 6104-6107.	2.4	42
32	Azulene-Fused Linear Polycyclic Aromatic Hydrocarbons with Small Bandgap, High Stability, and Reversible Stimuli Responsiveness. Organic Letters, 2017, 19, 5585-5588.	2.4	87
33	Iridium-catalysed hydrosilylation of cyclopropanes via regioselective carbon–carbon bond cleavage. Chemical Communications, 2017, 53, 9281-9284.	2.2	12
34	Rheniumâ€Catalyzed Construction of Polycyclic Hydrocarbon Frameworks by a Unique Cyclization of 1, <i>n</i> h<∂i>nh<0;i>nh<0;i>nh<0.2017, 129, 5956-5960.	1.6	10
35	Structural Characterization and Unique Catalytic Performance of Silyl-Group-Substituted Geminal Dichromiomethane Complexes Stabilized with a Diamine Ligand. Journal of the American Chemical Society, 2017, 139, 13184-13192.	6.6	27
36	Rhodiumâ€Catalyzed Synthesis of Chiral Spiroâ€9â€silabifluorenes by Dehydrogenative Silylation: Mechanistic Insights into the Construction of Tetraorganosilicon Stereocenters. Chemistry - A European Journal, 2016, 22, 6048-6058.	1.7	105

#	Article	IF	CITATIONS
37	Molybdenumâ€Catalyzed Stereospecific Deoxygenation of Epoxides to Alkenes. Advanced Synthesis and Catalysis, 2016, 358, 3966-3970.	2.1	29
38	Synthesis of Linear Allylsilanes via Molybdenum-Catalyzed Regioselective Hydrosilylation of Allenes. ACS Catalysis, 2016, 6, 3387-3395.	5. 5	43
39	Synthesis and Properties of Sila[⟨i⟩n⟨/i⟩]helicenes via Dehydrogenative Silylation of C–H Bonds under Rhodium Catalysis. Organic Letters, 2016, 18, 4380-4383.	2.4	52
40	Palladium atalyzed Direct Arylation of Azulene Based on Regioselective Câ^'H Bond Activation. Asian Journal of Organic Chemistry, 2016, 5, 629-635.	1.3	42
41	Trace Amounts of Second Metal Elements Can Play a Key Role in the Generation of Organometallic Compounds. Bulletin of the Chemical Society of Japan, 2015, 88, 1511-1529.	2.0	10
42	Short Synthesis of [5]―and [7]Phenacenes with Silyl Groups at the Axis Positions. Chemistry - an Asian Journal, 2015, 10, 2518-2524.	1.7	10
43	Rhodium-Catalyzed Synthesis of Benzosilolometallocenes via the Dehydrogenative Silylation of C(sp ^{)â€"H Bonds. Organic Letters, 2015, 17, 3102-3105.}	2.4	121
44	Stereospecific Deoxygenation of Aliphatic Epoxides to Alkenes under Rhenium Catalysis. Organic Letters, 2015, 17, 3346-3349.	2.4	36
45	Isolation and Structural Characterization of <i>Geminal</i> Di(iodozincio)methane Complexes Stabilized with Nitrogen Ligands. Journal of the American Chemical Society, 2015, 137, 114-117.	6.6	20
46	Iridiumâ€Catalyzed Intermolecular Dehydrogenative Silylation of Polycyclic Aromatic Compounds without Directing Groups. Chemistry - A European Journal, 2015, 21, 4566-4570.	1.7	40
47	Transition-Metal-Catalyzed Facile Access to 3,11-Dialkylfulminenes for Transistor Applications. Organic Letters, 2015, 17, 708-711.	2.4	22
48	Rhenium-catalysed dehydrogenative borylation of primary and secondary C(sp ³)–H bonds adjacent to a nitrogen atom. Chemical Communications, 2015, 51, 4583-4586.	2,2	28
49	Rhenium-Catalyzed <i>anti</i> -Markovnikov Addition Reaction of Methanetricarboxylates to Unactivated Terminal Acetylenes. Journal of the American Chemical Society, 2015, 137, 1452-1457.	6.6	31
50	Acceleration Effects of Phosphine Ligands on the Rhodium-Catalyzed Dehydrogenative Silylation and Germylation of Unactivated C(sp ³)â€"H Bonds. Journal of Organic Chemistry, 2015, 80, 5407-5414.	1.7	115
51	Iridium-Catalyzed Dehydrogenative Silylation of Azulenes Based on Regioselective C–H Bond Activation. Organic Letters, 2015, 17, 1798-1801.	2.4	69
52	Rhodium-Catalyzed Dehydrogenative Germylation of C–H Bonds: New Entry to Unsymmetrically Functionalized 9-Germafluorenes. Organic Letters, 2014, 16, 6492-6495.	2.4	46
53	Rhenium-Catalyzed Synthesis of $2 < i > H < /i > -1,2$ -Oxaphosphorin 2-Oxides via the Regio- and Stereoselective Addition Reaction of \hat{l}^2 -Keto Phosphonates with Alkynes. Organic Letters, 2014, 16, 5784-5787.	2.4	22
54	Bismuth-Catalyzed Synthesis of Polycyclic Aromatic Hydrocarbons (PAHs) with a Phenanthrene Backbone via Cyclization and Aromatization of 2-(2-Arylphenyl)vinyl Ethers. Organic Letters, 2014, 16, 4134-4137.	2.4	64

#	Article	IF	CITATIONS
55	Bismuth(III)-Catalyzed Dehydrative Etherification and Thioetherification of Phenolic Hydroxy Groups. Organic Letters, 2014, 16, 3828-3831.	2.4	36
56	Rhodium-Catalyzed Intramolecular Silylation of Unactivated C(sp ³)–H Bonds. Organic Letters, 2013, 15, 426-428.	2.4	93
57	Rhodium atalyzed Asymmetric Synthesis of Spirosilabifluorene Derivatives. Angewandte Chemie - International Edition, 2013, 52, 1520-1522.	7.2	224
58	Palladiumâ€Catalyzed <i>ortho</i> àâ€Selective CH Borylation of 2â€Phenylpyridine and Its Derivatives at Room Temperature. Angewandte Chemie - International Edition, 2013, 52, 4431-4434.	7.2	90
59	Development of Novel and Highly Efficient Methods to Construct Carbon–Carbon Bonds Using Group 7 Transition-Metal Catalysts. Bulletin of the Chemical Society of Japan, 2012, 85, 656-671.	2.0	32
60	Palladium-Catalyzed Synthesis of a Phosphine Oxide with a Chiral Phosphorus Center via C-H Phosphination. Heterocycles, 2012, 85, 3029.	0.4	15
61	Rhenium-Catalyzed Regio- and Stereoselective Synthesis of \hat{I}^3 -Thio- $\hat{I}\pm,\hat{I}^2$ -unsaturated Ketones via Insertion of Terminal Alkynes into the Câ \in S Bond. Organic Letters, 2012, 14, 6116-6118.	2.4	14
62	Rhenium-Catalyzed Regioselective Synthesis of Multisubstituted Pyridines from β-Enamino Ketones and Alkynes via C–C Bond Cleavage. Organic Letters, 2012, 14, 3182-3185.	2.4	86
63	Rhenium-catalyzed allylation of C–H bonds of benzoic and acrylic acids. Chemical Communications, 2011, 47, 10791.	2.2	61
64	Rhenium-Catalyzed Regio- and Stereoselective Addition of Two Carbon Units to Terminal Alkynes via Carbon–Carbon Bond Cleavage of β-Keto Sulfones. Organic Letters, 2011, 13, 2959-2961.	2.4	46
65	Palladium-Catalyzed Synthesis of Dibenzophosphole Oxides via Intramolecular Dehydrogenative Cyclization. Journal of Organic Chemistry, 2011, 76, 7370-7376.	1.7	140
66	Organic Reactions Catalyzed by Rhenium Carbonyl Complexes. Chemical Reviews, 2011, 111, 1938-1953.	23.0	230
67	Indium-Catalyzed Construction of Polycyclic Aromatic Hydrocarbon Skeletons via Dehydration. Journal of Organic Chemistry, 2011, 76, 7005-7009.	1.7	101
68	Manganese atalyzed Cleavage of a Carbon–Carbon Single Bond between Carbonyl Carbon and α arbon Atoms of Ketones. Angewandte Chemie - International Edition, 2011, 50, 10406-10408.	7.2	73
69	Rhenium-catalyzed insertion of terminal alkenes into a C(sp2)–H bond and successive transfer hydrogenation. Journal of Organometallic Chemistry, 2011, 696, 348-351.	0.8	9
70	Synthesis of meso-Substituted Tetraarylalkynylporphyrins via Rhenium-Catalyzed Formation of Naphthalene Units. Synlett, 2011, 2011, 2177-2180.	1.0	6
71	Synthesis of Multisubstituted Cyclopentadienes from Cyclopentenones Prepared via Catalytic Double Aldol Condensation and Nazarov Reaction Sequence. Synlett, 2011, 2011, 2585-2589.	1.0	7
72	Rhenium-catalyzed Regioselective Synthesis of Phenol Derivatives from 1,3-Diesters and Terminal Alkynes. Chemistry Letters, 2010, 39, 894-895.	0.7	15

#	Article	IF	CITATIONS
73	Rhenium-Catalyzed Diastereoselective Synthesis of Aminoindanes via the Insertion of Allenes into a Câ^'H Bond. Organic Letters, 2010, 12, 4274-4276.	2.4	101
74	Synthesis of Functionalized Pentacenes from Isobenzofurans Derived from Câ^'H Bond Activation. Organic Letters, 2010, 12, 5287-5289.	2.4	28
75	Indiumâ€Catalyzed Synthesis of Keto Esters from Cyclic 1,3â€Diketones and Alcohols and Application to the Synthesis of Seratrodast. Chemistry - an Asian Journal, 2010, 5, 941-945.	1.7	16
76	Cross-Coupling Reactions between C(sp \hat{A}^2)-H and C(sp \hat{A}^3)-H Bonds via Sequential Dehydrogenation and C-H Insertion. Synlett, 2010, 2010, 2883-2886.	1.0	9
77	Rhenium- and manganese-catalyzed carbon–carbon bond formation using 1,3-dicarbonyl compounds and alkynes. Pure and Applied Chemistry, 2010, 82, 1491-1501.	0.9	10
78	Rhenium-Catalyzed Synthesis of Indenones by Novel Dehydrative Trimerization of Aryl Aldehydes via Câ^'H Bond Activation. Organic Letters, 2010, 12, 2948-2950.	2.4	75
79	Rhenium- and Manganese-Catalyzed Synthesis of Aromatic Compounds from 1,3-Dicarbonyl Compounds and Alkynes. Journal of Organic Chemistry, 2010, 75, 334-341.	1.7	47
80	Iron-catalyzed synthesis of glycine derivatives via carbon–nitrogen bond cleavage using diazoacetate. Chemical Communications, 2010, 46, 8860.	2.2	45
81	Rhodium-Catalyzed Synthesis of Silafluorene Derivatives via Cleavage of Siliconâ^'Hydrogen and Carbonâ^'Hydrogen Bonds. Journal of the American Chemical Society, 2010, 132, 14324-14326.	6.6	212
82	Regioselective functionalization of alkanes by sequential dehydrogenation–hydrozirconation. Chemical Communications, 2010, 46, 5310.	2.2	11
83	Generation of Novel Nucleophilic Organometallic Species and Their Applications to Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 3-18.	0.0	3
84	Rhenium-Catalyzed Formation of Bicyclo [3.3.1] nonene Frameworks by a Reaction of Cyclic \hat{l}^2 -Keto Esters with Terminal Alkynes. Organic Letters, 2009, 11, 2535-2537.	2.4	41
85	Rhenium-Catalyzed Insertion of Nonpolar and Polar Unsaturated Molecules into an Olefinic Câ [^] H Bond. Organic Letters, 2009, 11, 2711-2714.	2.4	87
86	Rhenium-Catalyzed Addition of β-Enamino Esters to Allenes. Synlett, 2009, 2009, 3027-3031.	1.0	7
87	Rhenium―and Manganeseâ€Catalyzed Insertion of Alkynes into a Carbon–Carbon Single Bond of Cyclic and Acyclic 1,3â€Dicarbonyl Compounds. Chemistry - an Asian Journal, 2009, 4, 1424-1433.	1.7	42
88	Rhenium-Catalyzed Regioselective Alkylation of Phenols. Journal of the American Chemical Society, 2009, 131, 9914-9915.	6.6	89
89	Tantalum Complexes Incorporating Tris(pyrazolyl)Borate Ligands: Syntheses, Structures, and Ethylene Polymerization Behavior. Organometallics, 2009, 28, 6450-6457.	1.1	23
90	Rhenium-catalyzed Regio- and Stereoselective Dimerization and Cyclotrimerization of Terminal Alkynes. Chemistry Letters, 2009, 38, 836-837.	0.7	37

#	Article	IF	CITATIONS
91	Rheniumâ€Catalyzed Synthesis of Stereodefined Cyclopentenes from βâ€Ketoesters and Aliphatic Allenes. Angewandte Chemie - International Edition, 2008, 47, 9318-9321.	7.2	22
92	Hydroarylation of acetylenes, acrylates, and isocyanates with heteroaromatic compounds under rhenium catalysis. Tetrahedron, 2008, 64, 5974-5981.	1.0	83
93	Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via Câ°C Single-Bond Cleavage. Organic Letters, 2008, 10, 3133-3135.	2.4	70
94	Manganese-Catalyzed Construction of Tetrasubstituted Benzenes from 1,3-Dicarbonyl Compounds and Terminal Acetylenes. Organic Letters, 2008, 10, 3009-3011.	2.4	61
95	Rhenium- and manganese-catalyzed insertion of acetylenes into \hat{l}^2 -keto esters: synthesis of 2-pyranones. Chemical Communications, 2008, , 6360.	2.2	65
96	Synthesis of Cpâ ⁻ 'Re Complexes via Olefinic Câ ⁻ 'H Activation and Successive Formation of Cyclopentadienes. Journal of the American Chemical Society, 2008, 130, 14062-14063.	6.6	50
97	Rhenium-catalyzed synthesis of indene derivatives via C-H bond activation. Pure and Applied Chemistry, 2008, 80, 1149-1154.	0.9	22
98	Manganese-catalyzed Synthesis of Hydantoin Derivatives from Terminal Alkynes and Isocyanates. Chemistry Letters, 2008, 37, 740-741.	0.7	41
99	Reactions and Mechanistic Studies of Rhenium-Catalyzed Insertion of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carbonyl Compounds into a Câ \in H Bond. Bulletin of the Chemical Society of Japan, 2008, 81, 1393-1401.	2.0	45
100	Rhenium-catalyzed Coupling of 2-Propynyl Alcohols and Several Nucleophiles via Dehydration. Chemistry Letters, 2008, 37, 878-879.	0.7	31
101	Copper(I)- and Gold(I)-catalyzed Synthesis of 2,4-Disubstituted Quinoline Derivatives from <i>N</i> -Aryl-2-propynylamines. Chemistry Letters, 2007, 36, 1422-1423.	0.7	48
102	Rhenium-catalyzed [2+2] Cycloadditions of Norbornenes with Internal and Terminal Acetylenes. Chemistry Letters, 2007, 36, 1162-1163.	0.7	30
103	Rhenium-catalyzed Amidation of Heteroaromatic Compounds via C–H Bond Activation. Chemistry Letters, 2007, 36, 872-873.	0.7	35
104	Alkyne Exchange Reactions of Silylalkyne Complexes of Tantalum:  Mechanistic Investigation and Its Application in the Preparation of New Tantalum Complexes Having Functional Alkynes (PhCâ∢®CR (R =) Tj ETQq	O O O IrgBT	/0 ve rlock 10
105	Rhenium-Catalyzed Hydroamidation of Unactivated Terminal Alkynes:  Synthesis of (<i>E</i>)-Enamides. Organic Letters, 2007, 9, 5609-5611.	2.4	62
106	Rearrangement of Indene Skeletons under Mild Conditions. Journal of Organic Chemistry, 2007, 72, 6749-6752.	1.7	12
107	Rhenium- and Gold-Catalyzed Coupling of Aromatic Aldehydes with Trimethyl(phenylethynyl)silane: Synthesis of Diethynylmethanes. Angewandte Chemie - International Edition, 2007, 46, 3296-3299.	7.2	58
108	Manganese atalyzed Insertion of Aldehydes into a CH Bond. Angewandte Chemie - International Edition, 2007, 46, 6518-6520.	7.2	230

#	Article	IF	Citations
109	Indiumâ€Catalyzed Retroâ€Claisen Condensation. Angewandte Chemie - International Edition, 2007, 46, 7793-7795.	7.2	119
110	Rhenium-catalyzed synthesis of naphthalene derivatives via insertion of aldehydes into a C–H bond. Tetrahedron, 2007, 63, 8463-8468.	1.0	50
111	Heterosubstituted cyclopropanation of alkenes with organochromium reagents derived from heterosubstituted dihalomethanes, CrCl2, and tetraalkylethylenediamine. Journal of Organometallic Chemistry, 2007, 692, 520-529.	0.8	37
112	Insertion of Polar and Nonpolar Unsaturated Molecules into Carbonâ^'Rhenium Bonds Generated by Câ^'H Bond Activation:Â Synthesis of Phthalimidine and Indene Derivatives. Journal of the American Chemical Society, 2006, 128, 202-209.	6.6	259
113	Isocyanate acting as a carbonyl precursor: pyridyl group-assisted formation of 4H-pyrido[1,2-a]pyrimidin-4-ones from ketimines and isocyanates. Organic and Biomolecular Chemistry, 2006, 4, 203-205.	1.5	14
114	Rhenium-Catalyzed Insertion of Aldehyde into a Câ^'H Bond:Â Synthesis of Isobenzofuran Derivatives. Journal of the American Chemical Society, 2006, 128, 12376-12377.	6.6	138
115	Sequential Ruthenium-Catalyzed Hydroamination and Rhenium-Catalyzed Câ ⁻ 'H Bond Activation Leading to Indene Derivatives. Organic Letters, 2006, 8, 2891-2893.	2.4	39
116	Efficient Catalytic Insertion of Acetylenes into a Carbonâ´Carbon Single Bond of Nonstrained Cyclic Compounds under Mild Conditions. Journal of the American Chemical Society, 2006, 128, 11368-11369.	6.6	102
117	Rhenium-catalyzed Addition of Trimethylsilylacetylene to Aldimines. Chemistry Letters, 2006, 35, 1376-1377.	0.7	33
118	Formal hydrochromination of alkynes under nickel catalysis. Regioselective reductive coupling of alkynes and aldehydes leading to allylic alcohols. Tetrahedron, 2006, 62, 7534-7539.	1.0	15
119	Titanium and Zirconium Complexes with Non-Salicylaldimine-Type Imine–Phenoxy Chelate Ligands: Syntheses, Structures, and Ethylene-Polymerization Behavior. Chemistry - an Asian Journal, 2006, 1, 878-887.	1.7	32
120	Rhenium-Catalyzed Formation of Indene Frameworks via Câ€"H Bond Activation: [3 + 2] Annulation of Aromatic Aldimines and Acetylenes ChemInform, 2006, 37, no.	0.1	0
121	Rhenium- and Aniline-Catalyzed One-Pot Annulation of Aromatic Ketones and $\hat{l}\pm,\hat{l}^2$ -Unsaturated Esters Initiated by Cĩ£¿H Bond Activation. Angewandte Chemie - International Edition, 2006, 45, 2766-2768.	7. 2	118
122	Synthesis of Bis(phenoxyimine) Ti Alkyl Complexes and Observation of Living Species by 1H NMR Spectroscopy. Chemistry Letters, 2005, 34, 1382-1383.	0.7	35
123	A Novel Heteroligated Phenoxy-based Titanium Complex: Structure, Stability, and Ethylene Polymerization Behavior. Chemistry Letters, 2005, 34, 1458-1459.	0.7	16
124	Addition of Organochromium Reagents to Carbonyl Compounds. ChemInform, 2005, 36, no.	0.1	0
125	Dramatic Rate Acceleration by a Diphenyl-2-pyridylphosphine Ligand in the Hydration of Nitriles Catalyzed by Ru(acac)2Complexes. Organometallics, 2005, 24, 6287-6290.	1.1	121
126	Rhenium-Catalyzed Insertion of Terminal Acetylenes into a Câ^'H Bond of Active Methylene Compounds. Organic Letters, 2005, 7, 4823-4825.	2.4	104

#	Article	IF	Citations
127	Rhenium-Catalyzed Formation of Indene Frameworks via Câ^'H Bond Activation:Â [3+2] Annulation of Aromatic Aldimines and Acetylenes. Journal of the American Chemical Society, 2005, 127, 13498-13499.	6.6	233
128	Preparation of Cyclopropylsilanes from Terminal Alkenes with OrganoÂchromium Reagents. Synlett, 2004, 2004, 1347-1350.	1.0	16
129	Stereoselective Iodocyclopropanation of Terminal Alkenes with Iodoform, Chromium(II) Chloride, and N,N,N′,N′-Tetraethylethylenediamine ChemInform, 2004, 35, no.	0.1	0
130	Catalytic Performance of Tantalumâ€"Î-2-Alkyne Complexes [TaCl3(R1CCR2)L2] for Alkyne Cyclotrimerization Chemlnform, 2004, 35, no.	0.1	0
131	Preparation of Cyclopropylsilanes from Terminal Alkenes with Organochromium Reagents ChemInform, 2004, 35, no.	0.1	0
132	Transformation of Aldehydes (I) into (E)-1-Alkenylsilanes (VIII) and (E)-1-Alkenylboronic Esters (III) with a Catalytic Amount of a Chromium Salt Chemlnform, 2004, 35, no.	0.1	0
133	Transformation of Aldehydes into (E)-1-Alkenylsilanes and (E)-1-Alkenylboronic Esters with a Catalytic Amount of a Chromium Salt. Bulletin of the Chemical Society of Japan, 2004, 77, 1581-1586.	2.0	27
134	Catalytic Performance of Tantalumâ€"η2-Alkyne Complexes [TaCl3(R1C≡CR2)L2] for Alkyne Cyclotrimerization. Bulletin of the Chemical Society of Japan, 2004, 77, 1009-1011.	2.0	30
135	Activation of Manganese Metal with a Catalytic Amount of Lead and Me3SiCl and Its Application to Organic Synthesis. ChemInform, 2003, 34, no.	0.1	0
136	Successive Carbonâ€"Carbon Bond Formation by Sequential Generation of Radical and Anionic Species with Manganese and Catalytic Amounts of PbCl2 and Me3SiCl ChemInform, 2003, 34, no.	0.1	0
137	Regioselective Reductive Coupling of Alkynes and Aldehydes Leading to Allylic Alcohols ChemInform, 2003, 34, no.	0.1	0
138	Cross-pinacol-type coupling reactions between ?,?-unsaturated ketones and aldehydes with low-valent metals. Chirality, 2003, 15, 17-23.	1.3	38
139	Regioselective Reductive Coupling of Alkynes and Aldehydes Leading to Allylic Alcohols. Organic Letters, 2003, 5, 653-655.	2.4	80
140	Preparation, Structural Characterization, and Reactions of Tantalum-Alkyne Complexes TaCl3(R1Câ e0cl3e0cl3		

#	Article	IF	Citations
145	Indium-Catalyzed Reduction of Allyl Bromide with Gallium or Aluminum. Formation of Allylgallium and Allylaluminum Sesquibromides. Organic Letters, 2002, 4, 1727-1729.	2.4	55
146	Activation of Manganese Metal with a Catalytic Amount of Lead and Me3SiCl and Its Application to Organic Synthesis Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2002, 60, 1055-1062.	0.0	3
147	Generation of chromioenamines by reduction of O-acetyloximes with chromium(ii) and their application. Chemical Communications, 2001, , 1724-1725.	2.2	21
148	Reactions of coordinated geminal dichromium reagents with aldehydes: stereoselective formation of (Z)-2-chloroalk-2-en-1-ols. Chemical Communications, 2001, , 1128-1129.	2.2	19
149	Stereoselective Cross Pinacol-Type Coupling between $\hat{l}\pm,\hat{l}^2$ -Unsaturated Ketones and Aldehydes Mediated by Chromium(II) and R3SiCl. Angewandte Chemie - International Edition, 2001, 40, 1116-1119.	7.2	37
150	Preparation of 2,5-Disubstituted Furans from Terminal Ynones and Aldehydes with CrCl2, Me3SiCl, and H2O. Synlett, 2001, 2001, 1614-1616.	1.0	16
151	Nucleophilic addition of organochromium reagents to carbonyl compounds. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2000, 76, 123-131.	1.6	52
152	Improved Synthesis and Crystal Structure of TiCl3(tmeda)(thf): A Highly Stereoselective Pinacol Coupling Reagent for Aromatic Aldehydes. Chemistry Letters, 2000, 29, 334-335.	0.7	9
153	Cross-Coupling Reactions between \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Ketones and Aldehydes with CrCl2: Aldol Condensation and Cyclopropanol Formation. Angewandte Chemie - International Edition, 2000, 39, 2725-2727.	7.2	38
154	A Practical Transformation of Aldehydes into (E)-lodoalkenes with Geminal Dichromium Reagents. Synlett, 1999, 1999, 1268-1270.	1.0	43
155	One-Pot Transformation of RCHO to (E)-RCH=CHSiMe3 Using CHI3, Mn, Me3SiCl, and a Catalytic Amount of CrCl2. Synlett, 1999, 1999, 1769-1771.	1.0	20
156	Three-Component Coupling Reactions of Alkyl Iodides, 1,3-Dienes, and Carbonyl Compounds by Sequential Generation of Radical and Anionic Species with CrCl2. Angewandte Chemie - International Edition, 1998, 37, 152-155.	7.2	95
157	Isolation and Reactions of a Tantalumâ^'Imine Complex TaCl3(dme)(PhCHNCH2Ph). Organometallics, 1998, 17, 5128-5132.	1.1	28
158	B12-Catalyzed Generation of Allylic Chromium Reagents from 1,3-Dienes, CrCl2, and Water. Journal of Organic Chemistry, 1998, 63, 6450-6451.	1.7	36
159	Generation of α-Boryl Radicals by Reduction of α-Haloalkylboronic Esters with CrCl2. Synlett, 1998, 1998, 253-254.	1.0	20
160	Alkylidenation of Carbonyl Compounds with gem-Dizincioalkanes Mediated with Titanium Dichloride. Synlett, 1998, 1998, 1369-1371.	1.0	39
161	Generation of Nonstabilized Carbonyl Ylides with a Manganeseâ^'Lead Reducing System and Their [3 + 2] Cycloaddition Reactions. Journal of Organic Chemistry, 1997, 62, 8612-8613.	1.7	21
162	The first example for reactivity umpolung of diaryliodonium salts: Chromium(II)-mediated arylation of aldehydes. Tetrahedron Letters, 1997, 38, 8211-8214.	0.7	23

#	Article	IF	CITATIONS
163	Sequential 1,4-Addition and Irelandâ-'Claisen Rearrangement Promoted by a Manganeseâ-'PbCl2â-'Me3SiCl System1. Journal of Organic Chemistry, 1996, 61, 8728-8729.	1.7	23
164	Activation of manganese metal by a catalytic amount of PbCl2 and Me3SiCl. Tetrahedron Letters, 1996, 37, 7049-7052.	0.7	75
165	Sequential Generation and Utilization of Radical and Anionic Species with a Novel Manganeseâ^'Lead Reducing Agent. Three-Component Coupling Reactions of Alkyl Iodides, Electron-Deficient Olefins, and Carbonyl Compounds. Journal of Organic Chemistry, 1996, 61, 7990-7991.	1.7	45
166	Formal Hydroallylation of Carbon-Carbon Triple BondsviaTantalum-Alkyne Complexes. Stereoselective Preparation of 1,4-Dienes. Chemistry Letters, 1995, 24, 315-316.	0.7	19
167	Alkylidenation of Ketones bygem-Dibromoalkane, Sml2, and Sm in the Presence of Catalytic Amount of CrCl3. Chemistry Letters, 1995, 24, 259-260.	0.7	27
168	Selective Cyclotrimerization of AcetylenesviaTantalum-Alkyne Complexes. Chemistry Letters, 1995, 24, 851-852.	0.7	39
169	Transformation of Aldehydes into (E)-1-Alkenylboronic Esters with a Geminal Dichromium Reagent Derived from a Dichloromethylboronic Ester and CrCl2. Synlett, 1995, 1995, 963-964.	1.0	66
170	Stereoselective preparation of primary (E)-allylic amines by the reaction of tantalum-alkyne complexes with metallo-imines. Tetrahedron Letters, 1994, 35, 1893-1896.	0.7	21
171	A Novel Catalytic Effect of Lead on the Reduction of a Zinc Carbenoid with Zinc Metal Leading to a Geminal Dizinc Compound. Acceleration of the Wittig-Type Olefination with the RCHX2-TiCl4-Zn Systems by Addition of Lead. Journal of Organic Chemistry, 1994, 59, 2668-2670.	1.7	266
172	A Dramatic Effect of a Catalytic Amount of Lead on the Simmons-Smith Reaction and Formation of Alkylzinc Compounds from Iodoalkanes. Reactivity of Zinc Metal: Activation and Deactivation. Journal of Organic Chemistry, 1994, 59, 2671-2673.	1.7	101
173	Alkoxy-Directed Insertion of Carbon-Carbon Double Bonds into Tantalum-Alkyne Complexes. Chemo- and Stereoslective Addition of Alkenyl Groups to Olefins. Journal of Organic Chemistry, 1994, 59, 5852-5853.	1.7	22
174	Reaction of Tantalum–Alkyne Complexes with Isocyanates or Acyl Cyanides. Stereoselective Functionalization of Carbon–Carbon Triple Bonds. Bulletin of the Chemical Society of Japan, 1992, 65, 1543-1549.	2.0	16
175	Reaction of Tantalum-Alkyne Complexes with Hydrazones. Stereoselective Synthesis of (E)-Allylic Hydrazines Chemistry Letters, 1992, , 99-102.	0.7	15
176	Regioselectivity in the reaction of tantalum-unsymmetrical acetylene complexes with carbonyl compounds. Stereoselective preparation of 1-alkenyl sulfides, .alpha.,.betaunsaturated esters, and amides. Journal of Organic Chemistry, 1992, 57, 6796-6802.	1.7	43
177	Selective reduction of alkynes to (Z)-alkenes via niobium- or tantalum-alkyne complexes. Journal of Organic Chemistry, 1992, 57, 1615-1618.	1.7	41
178	Reactions between tantalum- or niobium-alkyne complexes and carbonyl compounds. Journal of Organic Chemistry, 1992, 57, 1973-1981.	1.7	58
179	Regioselective synthesis of highly substituted furans via tantalum-alkyne complexes Tetrahedron, 1992, 48, 3495-3502.	1.0	19
180	Stereoselective synthesis of trisubstituted .alpha.,.betaunsaturated esters and amides via reactions of tantalum-alkyne complexes derived from acetylenic esters and amides with carbonyl compounds. Journal of Organic Chemistry, 1991, 56, 5980-5982.	1.7	25

#	Article	IF	CITATIONS
181	Reaction of Tantalum–Alkyne Complexes with Isocyanates Leading to (E)-α,β-Unsaturated Amides. Stereoselective Functionalization of Carbon-Carbon Triple Bonds. Chemistry Letters, 1991, 20, 1479-1482.	0.7	14
182	Reduction of acetylenes to (Z)-olefins by means of low-valent niobium or tantalum Tetrahedron Letters, 1990, 31, 365-368.	0.7	42
183	Preparation of 1-naphthols from acetylenes and o-phthalaldehyde using low-valent tantalum and niobium Tetrahedron Letters, 1990, 31, 369-372.	0.7	38
184	New reagents. I. Reagents for carbon-carbon bond formation. Tantalum-alkyne complexes "low-valent tantalum(TaCl5-Zn)" Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1990, 48, 966-967.	0.0	5
185	Stereoselective construction of quaternary carbons by the reaction of aldehydes with allylic chromium reagents prepared from 1,3-diene monoepoxides and chromium dichloride. Journal of Organic Chemistry, 1990, 55, 1705-1706.	1.7	55
186	Regioselective synthesis of highly substituted furans via tantalum-alkyne complexes. Journal of Organic Chemistry, 1990, 55, 5310-5312.	1.7	26
187	Regio- and stereoselective addition of tantalum-[1-(alkylthio)-1-alkyne] complexes with carbonyl compounds. Organometallics, 1990, 9, 3030-3031.	1.1	16
188	Tantalum-alkyne complexes as synthetic intermediates. Stereoselective preparation of trisubstituted allylic alcohols from acetylenes and aldehydes. Journal of Organic Chemistry, 1990, 55, 1707-1708.	1.7	58
189	New reagents. I. Reagents for carbon-carbon bond formation. Organochromium reagents: Chromium(II) chloride(CrCl2) Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1990, 48, 962-963.	0.0	3
190	Preparation of alkenyl sulfides and enamines by alkylidenation of carboxylic acid derivatives. Tetrahedron Letters, 1989, 30, 211-214.	0.7	56
191	Stereoselective addition of α-chloro allylic chromium reagents to aldehydes. Tetrahedron Letters, 1989, 30, 4389-4392.	0.7	31
192	Preparation of alkylchromium reagents by reduction of alkyl halides with chromium(II) chloride under cobalt catalysis. Journal of Organic Chemistry, 1989, 54, 4732-4734.	1.7	104
193	Reduction of acrolein dialkyl, acetals with CrCl2. \hat{I}^3 y-alkoxy substitued allylic chromium reagents for selective synthesis of erythro-1, 2-diols Tetrahedron Letters, 1988, 29, 5263-5266.	0.7	72
194	Regio- and stereoselective preparation of silyl enol ethers by alkylidenation of silyl esters. Tetrahedron Letters, 1988, 29, 1065-1068.	0.7	61
195	Chromium(VI) or Ruthenium(II) Complex Catalysis in Oxidation of Alcohols to Aldehydes and Ketones by Means of Bis(trimethylsilyl) Peroxide. Bulletin of the Chemical Society of Japan, 1988, 61, 3607-3612.	2.0	56
196	Organochromium reagents for highly selective carbon-carbon bond formation Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1988, 46, 66-77.	0.0	23
197	Alkylidenation of ester carbonyl groups by means of a reagent derived from RCHBr2, Zn, TiCl4, and TMEDA. Stereoselective preparation of (Z)-alkenyl ethers. Journal of Organic Chemistry, 1987, 52, 4410-4412.	1.7	160
198	(E)-Selective olefination of aldehydes by means of gem-dichromium reagents derived by reduction of gem-diiodoalkanes with chromium(II) chloride. Journal of the American Chemical Society, 1987, 109, 951-953.	6.6	206

#	Article	IF	Citations
199	Stereoselective synthesis of (E)-alkenylsilanes from aldehydes with a reagent prepared by chromium(II) reduction of Me3SiCHBr2. Tetrahedron Letters, 1987, 28, 1443-1446.	0.7	81
200	Reaction of (.alphaThioalkyl)chromium compounds prepared by chromium(II)-reduction of .alphahalo sulfides. Journal of Organic Chemistry, 1986, 51, 5045-5046.	1.7	37
201	Isomerization of Allylic Alcohols Catalyzed by Vanadium or Molybdenum Complexes. Bulletin of the Chemical Society of Japan, 1985, 58, 844-849.	2.0	51
202	Carbonyl methylenation of easily enolizable ketones. Tetrahedron Letters, 1985, 26, 5579-5580.	0.7	168
203	Chemoselective methylenation with a methylenedianion synthon. Tetrahedron Letters, 1985, 26, 5581-5584.	0.7	104
204	Aldehyde-selective addition of alkynylchromium compounds prepared by reduction of alkynyl halides with chromium(II) reagent. Tetrahedron Letters, 1985, 26, 5585-5588.	0.7	110
205	Acyclic stereoselection. 32. Synthesis and characterization of the diastereomeric (4S)-pentane-1,2,3,4-tetraols. Journal of Organic Chemistry, 1985, 50, 3247-3251.	1.7	101
206	Organoaluminium assisted rearrangements of five-membered ring enol ethers with vinyl substituents. Tetrahedron, 1984, 40, 4013-4018.	1.0	27
207	Cross-coupling Reaction between Enol Phosphates and Organoaluminium Compounds in the Presence of Palladium(0) Catalyst. Bulletin of the Chemical Society of Japan, 1984, 57, 108-115.	2.0	63
208	Aliphatic Claisen Rearrangement Promoted by Organoaluminium Reagents. Bulletin of the Chemical Society of Japan, 1984, 57, 446-451.	2.0	65
209	Transition-metal catalyzed oxidation of alcohols to aldehydes and ketones by means of Me3SiOOSiMe3. Tetrahedron Letters, 1983, 24, 2185-2188.	0.7	86
210	Selective grignard-type carbonyl addition of alkenyl halides mediated by chromium(II) chloride. Tetrahedron Letters, 1983, 24, 5281-5284.	0.7	301
211	Isomerization of primary allylic alcohols to tertiary ones by means of Me3SiOOSiMe3-VO(acac)2 catalyst. Tetrahedron Letters, 1983, 24, 3741-3744.	0.7	20
212	Baeyer-Villiger Oxidation with Me3SiOOSiMe3under Assistance of SnCl4or BF3·OEt2. Bulletin of the Chemical Society of Japan, 1983, 56, 2029-2032.	2.0	64
213	Stereoselective Epoxidation of Allylic Alcohols and Dehydrogenative Oxidation of Secondary Alcohols by Means oft-Butyl Hydroperoxide and Aluminium Reagents. Bulletin of the Chemical Society of Japan, 1983, 56, 3791-3795.	2.0	31
214	Ketone Synthesis from Acid Chloride by Means of Organometallic Reagent Derived from R3Al–Cu(acac)2-PPh3System. Bulletin of the Chemical Society of Japan, 1981, 54, 1281-1282.	2.0	32
215	Aliphatic claisen rearrangement promoted by organoaluminium compounds. Tetrahedron Letters, 1981, 22, 3985-3988.	0.7	74
216	Selective oxidation of a primary hydroxyl in the presence of secondary one. Tetrahedron Letters, 1981, 22, 1605-1608.	0.7	143

#	Article	IF	CITATIONS
217	Pd(0) promoted alkylation of enol phosphates with organoaluminium compounds and its synthetic applications. Tetrahedron Letters, 1981, 22, 1609-1612.	0.7	51
218	Wittig-type Reaction of Dimetallated Carbodianion Species as Produced by Zinc Reduction ofgem-Polyhalogen Compounds in the Presence of Lewis Acids. Bulletin of the Chemical Society of Japan, 1980, 53, 1698-1702.	2.0	152
219	Carbonî—,carbon bond formation by cross-coupling of enol phosphates with organoaluminium compounds catalyzed by palladium(O) complex. Tetrahedron Letters, 1980, 21, 2531-2534.	0.7	86
220	Selective oxidation with t-butyl hydroperoxide and aluminium reagents. Tetrahedron Letters, 1980, 21, 1657-1660.	0.7	63
221	Oxidation of alcohols with oxoperoxobis(N-phenylbenzohydroxamato)molybdenum(VI). Tetrahedron Letters, 1980, 21, 4843-4846.	0.7	42
222	CROSSED ALDOL REACTION MEDIATED BY DIETHYLALUMINUM 2,2,6,6-TETRAMETHYLPIPERIDIDE (DATMP). Chemistry Letters, 1979, 8, 379-380.	0.7	24
223	Effective methods of carbonyl methylenation using CH2I2-Zn-Me3Al and CH2Br2-Zn-TiCl4 system. Tetrahedron Letters, 1978, 19, 2417-2420.	0.7	190