Claus Sternberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3627189/publications.pdf

Version: 2024-02-01

147566 197535 7,833 54 31 49 h-index citations g-index papers 57 57 57 8621 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Quantification of biofilm structures by the novel computer program comstat. Microbiology (United) Tj ETQq $1\ 1$	0.784314	rgBT/Qverlod
2	New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. Applied and Environmental Microbiology, 1998, 64, 2240-2246.	1.4	883
3	Critical review on biofilm methods. Critical Reviews in Microbiology, 2017, 43, 313-351.	2.7	693
4	Mucoid conversion of Pseudomonas aeruginos by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology (United Kingdom), 1999, 145, 1349-1357.	0.7	437
5	Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molecular Microbiology, 1996, 20, 127-136.	1.2	344
6	In Situ Gene Expression in Mixed-Culture Biofilms: Evidence of Metabolic Interactions between Community Members. Applied and Environmental Microbiology, 1998, 64, 721-732.	1.4	307
7	Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environmental Microbiology, 2004, 6, 726-732.	1.8	294
8	Establishment of New Genetic Traits in a Microbial Biofilm Community. Applied and Environmental Microbiology, 1998, 64, 2247-2255.	1.4	284
9	Distribution of Bacterial Growth Activity in Flow-Chamber Biofilms. Applied and Environmental Microbiology, 1999, 65, 4108-4117.	1.4	267
10	[2] Molecular tools for study of biofilm physiology. Methods in Enzymology, 1999, 310, 20-42.	0.4	246
11	Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environmental Microbiology, 2005, 7, 894-904.	1.8	233
12	In Situ Growth Rates and Biofilm Development of <i>Pseudomonas aeruginosa</i> Populations in Chronic Lung Infections. Journal of Bacteriology, 2008, 190, 2767-2776.	1.0	201
13	Differential bacterial capture and transport preferences facilitate co-growth on dietary xylan in the human gut. Nature Microbiology, 2018, 3, 570-580.	5.9	121
14	Insight into the microbial multicellular lifestyle via flow ell technology and confocal microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 90-103.	1.1	118
15	Bacterial plasmid conjugation on semi-solid surfaces monitored with the green fluorescent protein (GFP) from Aequorea victoria as a marker. Gene, 1996, 173, 59-65.	1.0	115
16	An <i>in vitro</i> model of bacterial infections in wounds and other soft tissues. Apmis, 2010, 118, 156-164.	0.9	109
17	Modern microscopy in biofilm research: confocal microscopy and other approaches. Current Opinion in Biotechnology, 1999, 10, 263-268.	3.3	108
18	Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies. Lab on A Chip, 2010, 10, 2162.	3.1	105

#	Article	IF	CITATIONS
19	Analysis of the multimer resolution system encoded by the parCBA operon of broad-host-range plasmid RP4. Molecular Microbiology, 1994, 12, 131-141.	1.2	91
20	Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiology Letters, 2006, 149, 77-83.	0.7	89
21	Growing and Analyzing Biofilms in Flow Cells. , 2006, Chapter 1, Unit 1B.2.		74
22	Growing and Analyzing Biofilms in Flow Chambers. Current Protocols in Microbiology, 2011, 21, Unit 1B.2.	6.5	71
23	An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiology Ecology, 2011, 75, 17-27.	1.3	64
24	Biofilm Induced Tolerance towards Antimicrobial Peptides. PLoS ONE, 2008, 3, e1891.	1.1	64
25	Immunomodulating potential of supplementation with probiotics: a dose–response study in healthy young adults. FEMS Immunology and Medical Microbiology, 2006, 47, 380-390.	2.7	63
26	Ultrasmall TPGS–PLGA Hybrid Nanoparticles for Site-Specific Delivery of Antibiotics into <i>Pseudomonas aeruginosa</i> Biofilms in Lungs. ACS Applied Materials & Diterfaces, 2020, 12, 380-389.	4.0	57
27	Secreted singleâ€stranded <scp>DNA</scp> is involved in the initial phase of biofilm formation by <scp><i>N</i></scp> <i>eisseria gonorrhoeaeEnvironmental Microbiology, 2014, 16, 1040-1052.</i>	1.8	46
28	Utilizing nanoparticles for improving anti-biofilm effects of azithromycin: A head-to-head comparison of modified hyaluronic acid nanogels and coated poly (lactic-co-glycolic acid) nanoparticles. Journal of Colloid and Interface Science, 2019, 555, 595-606.	5.0	42
29	Methods for Studying Biofilm Formation: Flow Cells and Confocal Laser Scanning Microscopy. Methods in Molecular Biology, 2014, 1149, 615-629.	0.4	41
30	Synthesis of carbon quantum dot-poly lactic-co-glycolic acid hybrid nanoparticles for chemo-photothermal therapy against bacterial biofilms. Journal of Colloid and Interface Science, 2020, 577, 66-74.	5.0	38
31	Physiological responses of Pseudomonas putida KT2442 to phosphate starvation. Microbiology (United Kingdom), 1996, 142, 155-163.	0.7	33
32	Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells. Journal of Visualized Experiments, $2011, \ldots$	0.2	32
33	Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents. Molecules, 2010, 15, 780-792.	1.7	31
34	Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Microbial Cell Factories, $2016,15,181.$	1.9	30
35	Modular microfluidic system as a model of cystic fibrosis airways. Biomicrofluidics, 2012, 6, 34109.	1.2	23
36	Detection of bioluminescence from individual bacterial cells: a comparison of two different low-light imaging systems., 1997, 12, 7-13.		21

#	Article	IF	Citations
37	[2] Monitoring bacterial growth activity in biofilms from laboratory flow chambers, plant rhizosphere, and animal intestine. Methods in Enzymology, 2001, 337, 21-42.	0.4	17
38	Assessment of flhDC mRNA Levels inSerratia liquefaciens Swarm Cells. Journal of Bacteriology, 2000, 182, 2680-2686.	1.0	15
39	Methods for Dynamic Investigations of Surface-Attached In Vitro Bacterial and Fungal Biofilms. Methods in Molecular Biology, 2014, 1147, 3-22.	0.4	15
40	Stimulation of Escherichia coli F-18Colâ^' type-1 fimbriae synthesis by leuX. FEMS Microbiology Letters, 1994, 122, 281-287.	0.7	13
41	Inactivation of gltB Abolishes Expression of the Assimilatory Nitrate Reductase Gene (nasB) in Pseudomonas putida KT2442. Journal of Bacteriology, 2000, 182, 3368-3376.	1.0	12
42	Microbial biofilms in biorefinery – Towards a sustainable production of low-value bulk chemicals and fuels. Biotechnology Advances, 2021, 50, 107766.	6.0	12
43	Bacterial Cell Cultures in a Lab-on-a-Disc: A Simple and Versatile Tool for Quantification of Antibiotic Treatment Efficacy. Analytical Chemistry, 2020, 92, 13871-13879.	3.2	9
44	<i>In Situ</i> Detection of Gene Transfer in a Model Biofilm Engaged in Degradation of Benzyl Alcohol. Apmis, 1998, 106, 25-28.	0.9	8
45	Advanced Microscopy of Microbial Cells. Advances in Biochemical Engineering/Biotechnology, 2010, 124, 21-54.	0.6	8
46	Quantification of specific E. coli in gut mucosa from Crohn's disease patients. Journal of Microbiological Methods, 2011, 86, 111-114.	0.7	8
47	Loss of AA13 LPMOs impairs degradation of resistant starch and reduces the growth of Aspergillus nidulans. Biotechnology for Biofuels, 2020, 13, 135.	6.2	8
48	Genetic labelling and application of the isoproturon-mineralizing Sphingomonas sp. strain SRS2 in soil and rhizosphere. Letters in Applied Microbiology, 2006, 43, 280-286.	1.0	7
49	Microbial communities: aggregates of individuals or co-ordinated systems. , 2000, , 199-214.		5
50	Application of RNA-seq and Bioimaging Methods to Study Microbe–Microbe Interactions and Their Effects on Biofilm Formation and Gene Expression. Methods in Molecular Biology, 2018, 1734, 131-158.	0.4	5
51	Confocal Microscopy of Biofilms â€" Spatiotemporal Approaches. , 2006, , 870-888.		4
52	Crystal ball. Environmental Microbiology, 2000, 2, 3-10.	1.8	2
53	Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories. F1000Research, 2016, 5, 421.	0.8	2
54	In Situ Monitoring of Bacterial Presence and Activity., 0,, 49-58.		O