
Juan J Vilatela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3627187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of stress transfer in laminated structural power composites produced with mechanically-connected electric double-layer capacitors. Composites Science and Technology, 2022, 218, 109128.	3.8	3
2	Structured light using carbon nanostructures driven by Kerr nonlinearities and a magnetic field. Physical Chemistry Chemical Physics, 2022, 24, 1081-1090.	1.3	9
3	Eliminating Solvents and Polymers in Highâ€Performance Si Anodes by Gasâ€Phase Assembly of Nanowire Fabrics. Advanced Energy Materials, 2022, 12, .	10.2	11
4	Thermoconformable, Flexible Lithiumâ€ion Batteries. Advanced Materials Technologies, 2022, 7, .	3.0	5
5	Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence. Science Advances, 2022, 8, eabn0939.	4.7	34
6	Highly Oriented Direct-Spun Carbon Nanotube Textiles Aligned by In Situ Radio-Frequency Fields. ACS Nano, 2022, 16, 9583-9597.	7.3	13
7	Improved alignment and stress transfer in CNT fibre fabrics studied by in situ X-ray and Raman during wet-drawing. Carbon, 2022, 197, 368-377.	5.4	10
8	Macroscopic yarns of FeCl3-intercalated collapsed carbon nanotubes with high doping and stability. Carbon, 2021, 173, 311-321.	5.4	14
9	Low-energy consumption, free-form capacitive deionization through nanostructured networks. Carbon, 2021, 176, 390-399.	5.4	15
10	Composite Fabrics of Conformal MoS ₂ Grown on CNT Fibers: Tough Battery Anodes without Metals or Binders. ACS Applied Energy Materials, 2021, 4, 5668-5676.	2.5	12
11	Photoelectrocatalytic detection of NADH on n-type silicon semiconductors facilitated by carbon nanotube fibers. Electrochimica Acta, 2021, 377, 138071.	2.6	8
12	Identification of Collapsed Carbon Nanotubes in High-Strength Fibers Spun from Compositionally Polydisperse Aerogels. ACS Applied Nano Materials, 2021, 4, 6947-6955.	2.4	6
13	Simultaneous improvements in conversion and properties of molecularly controlled CNT fibres. Carbon, 2021, 179, 417-424.	5.4	18
14	Controlling reaction paths for ultra-fast growth of inorganic nanowires floating in the gas phase. Nanoscale, 2021, 14, 55-64.	2.8	7
15	Understanding cooperative loading in carbon nanotube fibres through in-situ structural studies during stretching. Carbon, 2020, 156, 430-437.	5.4	18
16	Stronger aramids through molecular design and nanoprocessing. Polymer Chemistry, 2020, 11, 1489-1495.	1.9	4
17	Damage-tolerant, laminated structural supercapacitor composites enabled by integration of carbon nanotube fibres. Multifunctional Materials, 2020, 3, 015001.	2.4	15
18	Transparent and flexible high-power supercapacitors based on carbon nanotube fibre aerogels. Nanoscale, 2020, 12, 16980-16986.	2.8	21

#	Article	IF	CITATIONS
19	Origin of the electrocatalytic activity in carbon nanotube fiber counter-electrodes for solar-energy conversion. Nanoscale Advances, 2020, 2, 4400-4409.	2.2	9
20	Revealing the Mechanism of Electrochemical Lithiation of Carbon Nanotube Fibers. ACS Applied Energy Materials, 2020, 3, 8695-8705.	2.5	8
21	Tough sheets of nanowires produced floating in the gas phase. Materials Horizons, 2020, 7, 2978-2984.	6.4	10
22	Lignin Doped Carbon Nanotube Yarns for Improved Thermoelectric Efficiency. Advanced Sustainable Systems, 2020, 4, 2000147.	2.7	67
23	Interfacial studies in CNT fibre/TiO2 photoelectrodes for efficient H2 production. Applied Catalysis B: Environmental, 2020, 268, 118613.	10.8	16
24	Electrode Effects on Flexible and Robust Polypropylene Ferroelectret Devices for Fully Integrated Energy Harvesters. ACS Applied Materials & Interfaces, 2020, 12, 22815-22824.	4.0	8
25	A Route to High-Toughness Battery Electrodes. ACS Applied Energy Materials, 2019, 2, 5889-5899.	2.5	17
26	Morphology, thermal, and crystallization analysis of polylactic acid in the presence of carbon nanotube fibers with tunable fiber loadings through polymer infiltration. Polymer Crystallization, 2019, 2, e10081.	0.5	2
27	Interfacially-grafted single-walled carbon nanotube / poly (vinyl alcohol) composite fibers. Carbon, 2019, 146, 162-171.	5.4	28
28	Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube. Scientific Reports, 2019, 9, 9239.	1.6	28
29	Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105477.	3.8	117
30	Molecular characterization of macroscopic aerogels of single-walled carbon nanotubes. Carbon, 2019, 149, 512-518.	5.4	7
31	A perspective on high-performance CNT fibres for structural composites. Carbon, 2019, 150, 191-215.	5.4	90
32	Multiscale Engineering of Carbon Nanotube Fibers. , 2019, , 113-147.		1
33	Pore structure and electrochemical properties of CNT-based electrodes studied by <i>in situ</i> small/wide angle X-ray scattering. Journal of Materials Chemistry A, 2019, 7, 5305-5314.	5.2	23
34	High rate hybrid MnO ₂ @CNT fabric anodes for Li-ion batteries: properties and a lithium storage mechanism study by <i>in situ</i> synchrotron X-ray scattering. Journal of Materials Chemistry A, 2019, 7, 26596-26606.	5.2	43
35	Controlled electrochemical functionalization of CNT fibers: Structure-chemistry relations and application in current collector-free all-solid supercapacitors. Carbon, 2019, 142, 599-609.	5.4	52
36	CNT fibres as dual counter-electrode/current-collector in highly efficient and stable dye-sensitized solar cells. Carbon, 2019, 141, 488-496.	5.4	43

#	Article	IF	CITATIONS
37	Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves. Scientific Reports, 2018, 8, 3407.	1.6	83
38	Largeâ€Area Schottky Junctions between ZnO and Carbon Nanotube Fibres. ChemPlusChem, 2018, 83, 285-293.	1.3	7
39	Gas-Phase Functionalization of Macroscopic Carbon Nanotube Fiber Assemblies: Reaction Control, Electrochemical Properties, and Use for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 5760-5770.	4.0	53
40	Tensile properties of carbon nanotube fibres described by the fibrillar crystallite model. Carbon, 2018, 133, 44-52.	5.4	45
41	Interconnected metal oxide CNT fibre hybrid networks for current collector-free asymmetric capacitive deionization. Journal of Materials Chemistry A, 2018, 6, 10898-10908.	5.2	53
42	A hybrid molecular photoanode for efficient light-induced water oxidation. Sustainable Energy and Fuels, 2018, 2, 1979-1985.	2.5	20
43	Enhanced Electro-Fenton Mineralization of Acid Orange 7 Using a Carbon Nanotube Fiber-Based Cathode. Frontiers in Materials, 2018, 5, .	1.2	7
44	Doping of Self-Standing CNT Fibers: Promising Flexible Air-Cathodes for High-Energy-Density Structural Zn–Air Batteries. ACS Applied Energy Materials, 2018, 1, 2434-2439.	2.5	31
45	Surface Chemistry Analysis of Carbon Nanotube Fibers by Xâ€Ray Photoelectron Spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800187.	0.8	15
46	Carbon nanotube fibers with martensite and austenite Fe residual catalyst: room temperature ferromagnetism and implications for CVD growth. Journal of Materials Chemistry C, 2017, 5, 5544-5550.	2.7	10
47	Largeâ€Area, Allâ€Solid, and Flexible Electric Double Layer Capacitors Based on CNT Fiber Electrodes and Polymer Electrolytes. Advanced Materials Technologies, 2017, 2, 1600290.	3.0	66
48	Interfacial charge transfer in functionalized multi-walled carbon nanotube@TiO ₂ nanofibres. Nanoscale, 2017, 9, 7911-7921.	2.8	71
49	Manganese dioxide decoration of macroscopic carbon nanotube fibers: From high-performance liquid-based to all-solid-state supercapacitors. Journal of Power Sources, 2017, 372, 64-73.	4.0	53
50	Large area photoelectrodes based on hybrids of CNT fibres and ALD-grown TiO ₂ . Journal of Materials Chemistry A, 2017, 5, 24695-24706.	5.2	36
51	Interfacial crystallization of isotactic polypropylene surrounding macroscopic carbon nanotube and graphene fibers. Polymer, 2016, 91, 136-145.	1.8	53
52	A Composite Fabrication Sensor Based on Electrochemical Doping of Carbon Nanotube Yarns. Advanced Functional Materials, 2016, 26, 7139-7147.	7.8	32
53	Threading through Macrocycles Enhances the Performance of Carbon Nanotubes as Polymer Fillers. ACS Nano, 2016, 10, 8012-8018.	7.3	30
54	Highly responsive UV-photodetectors based on single electrospun TiO ₂ nanofibres. Journal of Materials Chemistry C, 2016, 4, 10707-10714.	2.7	41

#	Article	IF	CITATIONS
55	Inherent predominance of high chiral angle metallic carbon nanotubes in continuous fibers grown from a molten catalyst. Nanoscale, 2016, 8, 4236-4244.	2.8	26
56	Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance. Nanoscale, 2016, 8, 3620-3628.	2.8	75
57	Group 16 elements control the synthesis of continuous fibers of carbon nanotubes. Carbon, 2016, 101, 458-464.	5.4	30
58	Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Applied Catalysis B: Environmental, 2015, 179, 574-582.	10.8	117
59	Strong Carbon Nanotube Fibers by Drawing Inspiration from Polymer Fiber Spinning. ACS Nano, 2015, 9, 7392-7398.	7.3	115
60	Tough Electrodes: Carbon Nanotube Fibers as the Ultimate Current Collectors/Active Material for Energy Management Devices. Chemistry of Materials, 2015, 27, 6901-6917.	3.2	63
61	A Spray Pyrolysis Method to Grow Carbon Nanotubes on Carbon Fibres, Steel and Ceramic Bricks. Journal of Nanoscience and Nanotechnology, 2015, 15, 2858-2864.	0.9	13
62	Real time monitoring of click chemistry self-healing in polymer composites. Journal of Materials Chemistry A, 2014, 2, 3881.	5.2	21
63	Controlling Carbon Nanotube Type in Macroscopic Fibers Synthesized by the Direct Spinning Process. Chemistry of Materials, 2014, 26, 3550-3557.	3.2	113
64	Electric Field-Modulated Non-ohmic Behavior of Carbon Nanotube Fibers in Polar Liquids. ACS Nano, 2014, 8, 8497-8504.	7.3	21
65	Liquid Infiltration into Carbon Nanotube Fibers: Effect on Structure and Electrical Properties. ACS Nano, 2013, 7, 8412-8422.	7.3	86
66	Thermoset curing through Joule heating of nanocarbons for composite manufacture, repair and soldering. Carbon, 2013, 63, 523-529.	5.4	68
67	Selective synthesis of double helices of carbon nanotube bundles grown on treated metallic substrates. Physica Status Solidi (B): Basic Research, 2012, 249, 2382-2385.	0.7	1
68	Nanocarbon Composites and Hybrids in Sustainability: A Review. ChemSusChem, 2012, 5, 456-478.	3.6	157
69	The hierarchical structure and properties of multifunctional carbon nanotube fibre composites. Carbon, 2012, 50, 1227-1234.	5.4	68
70	Carbon nanotube bundles self-assembled in double helix microstructures. Carbon, 2012, 50, 3688-3693.	5.4	22
71	A Model for the Strength of Yarn-like Carbon Nanotube Fibers. ACS Nano, 2011, 5, 1921-1927.	7.3	162
72	Tuning the Mechanical Properties of Composites from Elastomeric to Rigid Thermoplastic by Controlled Addition of Carbon Nanotubes. Small, 2011, 7, 1579-1586.	5.2	31

#	Article	IF	CITATIONS
73	The Effect of Nanotube Content and Orientation on the Mechanical Properties of Polymer-Nanotube Composite Fibers: Separating Intrinsic Reinforcement from Orientational Effects. Advanced Functional Materials, 2011, 21, 364-371.	7.8	70
74	Yarn‣ike Carbon Nanotube Fibers. Advanced Materials, 2010, 22, 4959-4963.	11.1	142
75	Strong Dependence of Mechanical Properties on Fiber Diameter for Polymerâ^'Nanotube Composite Fibers: Differentiating Defect from Orientation Effects. ACS Nano, 2010, 4, 6989-6997.	7.3	73
76	Structural studies on carbon nanotube fibres by synchrotron radiation microdiffraction and microfluorescence. Journal of Applied Crystallography, 2009, 42, 1122-1128.	1.9	28
77	Direct spinning of carbon nanotube fibres from liquid feedstock. International Journal of Material Forming, 2008, 1, 59-62.	0.9	40
78	Controlled Nucleation and Growth of Carbon Nitride Films on CNT Fiber Fabric for Photoelectrochemical Applications. Advanced Sustainable Systems, 0, , 2000265.	2.7	4