
Tzviya Zeev-Ben-Mordehai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3626970/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	FoldIndex(C): a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, 2005, 21, 3435-3438.	4.1	886
2	Structural Basis of Vesicle Formation at the Inner Nuclear Membrane. Cell, 2015, 163, 1692-1701.	28.9	180
3	Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science, 2018, 362, 829-834.	12.6	155
4	Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4176-4181.	7.1	93
5	Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling. Cell Reports, 2015, 13, 2645-2652.	6.4	80
6	Eukaryotic expression: developments for structural proteomics. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 1114-1124.	2.5	79
7	Conserved Eukaryotic Fusogens Can Fuse Viral Envelopes to Cells. Science, 2011, 332, 589-592.	12.6	75
8	The intracellular domain of theDrosophila cholinesterase-like neural adhesion protein, gliotactin, is natively unfolded. Proteins: Structure, Function and Bioinformatics, 2003, 53, 758-767.	2.6	60
9	The multiâ€scale architecture of mammalian sperm flagella and implications for ciliary motility. EMBO Journal, 2021, 40, e107410.	7.8	55
10	The Structure of Herpesvirus Fusion Glycoprotein B-Bilayer Complex Reveals the Protein-Membrane and Lateral Protein-Protein Interaction. Structure, 2013, 21, 1396-1405.	3.3	47
11	Biophysical Characterization of the Unstructured Cytoplasmic Domain of the Human Neuronal Adhesion Protein Neuroligin 3. Biophysical Journal, 2008, 95, 1928-1944.	0.5	45
12	A convolutional autoencoder approach for mining features in cellular electron cryo-tomograms and weakly supervised coarse segmentation. Journal of Structural Biology, 2018, 202, 150-160.	2.8	41
13	The full-length cell–cell fusogen EFF-1 is monomeric and upright on the membrane. Nature Communications, 2014, 5, 3912.	12.8	40
14	Extracellular Vesicles: A Platform for the Structure Determination of Membrane Proteins by Cryo-EM. Structure, 2014, 22, 1687-1692.	3.3	39
15	Transient apical polarization of Gliotactin and Coracle is required for parallel alignment of wing hairs in Drosophila. Developmental Biology, 2004, 275, 301-314.	2.0	34
16	A cool hybrid approach to the herpesvirus â€~life' cycle. Current Opinion in Virology, 2014, 5, 42-49.	5.4	33
17	Deep learning-based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms. Bioinformatics, 2017, 33, i13-i22.	4.1	32
18	A dynamic basal complex modulates mammalian sperm movement. Nature Communications, 2021, 12, 3808.	12.8	27

#	Article	IF	CITATIONS
19	Cryo-EM structure of the native butyrylcholinesterase tetramer reveals a dimer of dimers stabilized by a superhelical assembly. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13270-13275.	7.1	24
20	In-cell structures of conserved supramolecular protein arrays at the mitochondria–cytoskeleton interface in mammalian sperm. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	24
21	Acetylcholinesterase in motion: Visualizing conformational changes in crystal structures by a morphing procedure. Biopolymers, 2003, 68, 395-406.	2.4	14
22	Amalgam, an axon guidance Drosophila adhesion protein belonging to the immunoglobulin superfamily: Over-expression, purification and biophysical characterization. Protein Expression and Purification, 2009, 63, 147-157.	1.3	13
23	The Quaternary Structure of Amalgam, a Drosophila Neuronal Adhesion Protein, Explains Its Dual Adhesion Properties. Biophysical Journal, 2009, 97, 2316-2326.	0.5	11
24	Fluoxetine targets an allosteric site in the enterovirus 2C AAA+ ATPase and stabilizes a ring-shaped hexameric complex. Science Advances, 2022, 8, eabj7615.	10.3	11
25	Cryoâ€electron microscopy of cholinesterases, present and future. Journal of Neurochemistry, 2020, 158, 1236-1243.	3.9	6
26	Looking back and looking forward: contributions of electron microscopy to the structural cell biology of gametes and fertilization. Open Biology, 2020, 10, 200186.	3.6	4
27	Polyproline-rich peptides associated with Torpedo californica acetylcholinesterase tetramers. Chemico-Biological Interactions, 2020, 319, 109007.	4.0	2
28	Studying membrane fusion at molecular resolution. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C187-C188.	0.3	0