Hangyu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3626297/publications.pdf

Version: 2024-02-01

331259 476904 1,616 29 21 29 citations h-index g-index papers 29 29 29 2154 times ranked docs citations citing authors all docs

#	Article	IF	Citations
1	Exosomes in the hypoxic TME: from release, uptake and biofunctions to clinical applications. Molecular Cancer, 2022, 21, 19.	7.9	63
2	Extracellular vesicle PD-L1 in reshaping tumor immune microenvironment: biological function and potential therapy strategies. Cell Communication and Signaling, 2022, 20, 14.	2.7	23
3	The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death and Disease, 2022, 13, 132.	2.7	63
4	Targeting tumor innervation: premises, promises, and challenges. Cell Death Discovery, 2022, 8, 131.	2.0	17
5	Tumor-derived exosomes in the cancer immune microenvironment and cancer immunotherapy. Cancer Letters, 2022, 548, 215823.	3.2	21
6	Non-coding RNA derived from extracellular vesicles in cancer immune escape: Biological functions and potential clinical applications. Cancer Letters, 2021, 501, 234-246.	3.2	20
7	IKK \hat{l}^2 activation promotes amphisome formation and extracellular vesicle secretion in tumor cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118857.	1.9	20
8	LINC00511 drives invasive behavior in hepatocellular carcinoma by regulating exosome secretion and invadopodia formation. Journal of Experimental and Clinical Cancer Research, 2021, 40, 183.	3.5	31
9	miR‑425 regulates lipophagy via SIRT1 to promote sorafenib resistance in liver cancer. Oncology Letters, 2021, 22, 695.	0.8	5
10	LncRNA NEAT1 promotes autophagy via regulating miRâ€204/ATG3 and enhanced cell resistance to sorafenib in hepatocellular carcinoma. Journal of Cellular Physiology, 2020, 235, 3402-3413.	2.0	82
11	YAP1 Inhibition in HUVECs Is Associated with Released Exosomes and Increased Hepatocarcinoma Invasion and Metastasis. Molecular Therapy - Nucleic Acids, 2020, 21, 86-97.	2.3	26
12	Focus on the morphogenesis, fate and the role in tumor progression of multivesicular bodies. Cell Communication and Signaling, 2020, 18, 122.	2.7	22
13	Autonomous glucose metabolic reprogramming of tumour cells under hypoxia: opportunities for targeted therapy. Journal of Experimental and Clinical Cancer Research, 2020, 39, 185.	3.5	13
14	<p>MicroRNA-375 Targets ATG14 to Inhibit Autophagy and Sensitize Hepatocellular Carcinoma Cells to Sorafenib</p> . OncoTargets and Therapy, 2020, Volume 13, 3557-3570.	1.0	23
15	Autophagy: A novel mechanism of chemoresistance in cancers. Biomedicine and Pharmacotherapy, 2019, 119, 109415.	2.5	124
16	Long non-coding RNA HOTAIR promotes exosome secretion by regulating RAB35 and SNAP23 in hepatocellular carcinoma. Molecular Cancer, 2019, 18, 78.	7.9	176
17	The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Letters, 2018, 414, 107-115.	3.2	195
18	The role of YAP/TAZ activity in cancer metabolic reprogramming. Molecular Cancer, 2018, 17, 134.	7.9	107

#	Article	IF	CITATIONS
19	Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/ \hat{l}^2 -catenin signaling pathway activation in hepatocellular carcinoma cells. Journal of Experimental and Clinical Cancer Research, 2018, 37, 9.	3.5	136
20	Extracellular HSP70/HSP70-PCs regulate hepatocarcinoma cell migration and invasion via RhoA. Oncology Letters, 2017 , 13 , $1095-1100$.	0.8	5
21	Transforming growth factor-beta1 suppresses hepatocellular carcinoma proliferation via activation of Hippo signaling. Oncotarget, 2017, 8, 29785-29794.	0.8	27
22	The long noncoding RNA HOTAIR activates autophagy by upregulating ATG3 and ATG7 in hepatocellular carcinoma. Molecular BioSystems, 2016, 12, 2605-2612.	2.9	131
23	Gab1 regulates proliferation and migration through the PI3K/Akt signaling pathway in intrahepatic cholangiocarcinoma. Tumor Biology, 2015, 36, 8367-8377.	0.8	21
24	CD105 promotes hepatocarcinoma cell invasion and metastasis through VEGF. Tumor Biology, 2015, 36, 737-745.	0.8	34
25	Ganoderma lucidum polysaccharide extract inhibits hepatocellular carcinoma growth by downregulating regulatory T cells accumulation and function by inducing microRNA-125b. Journal of Translational Medicine, 2015, 13, 100.	1.8	79
26	LPS promotes epithelial–mesenchymal transition and activation of TLR4/JNK signaling. Tumor Biology, 2014, 35, 10429-10435.	0.8	49
27	miR-224 is Critical for Celastrol-Induced Inhibition of Migration and Invasion of Hepatocellular Carcinoma Cells. Cellular Physiology and Biochemistry, 2013, 32, 448-458.	1.1	44
28	Down-Regulation of Gab1 Inhibits Cell Proliferation and Migration in Hilar Cholangiocarcinoma. PLoS ONE, 2013, 8, e81347.	1.1	26
29	Extracellular HSP70/HSP70-PCs Promote Epithelial-Mesenchymal Transition of Hepatocarcinoma Cells. PLoS ONE, 2013, 8, e84759.	1.1	33