Weibin Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3626126/publications.pdf

Version: 2024-02-01

471371 752573 1,482 21 17 20 citations h-index g-index papers 21 21 21 2651 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Response to Comment on "Improved CO2 Hydrogenation on Ni–ZnO/MCM-41 Catalysts with Cooperative Ni and ZnO Sites― Energy & Fuels, 2021, 35, 8438-8440.	2.5	O
2	Cu-Based Nanocatalysts for CO ₂ Hydrogenation to Methanol. Energy & Samp; Fuels, 2021, 35, 8558-8584.	2.5	74
3	Correlation and Improvement of Bimetallic Electronegativity on Metal–Organic Frameworks for Electrocatalytic Water Oxidation. Advanced Energy and Sustainability Research, 2021, 2, 2100055.	2.8	8
4	Insights into the Interaction between Immobilized Biocatalysts and Metal–Organic Frameworks: A Case Study of PCN-333. Jacs Au, 2021, 1, 2172-2181.	3 . 6	15
5	Improved CO ₂ Hydrogenation on Ni–ZnO/MCM-41 Catalysts with Cooperative Ni and ZnO Sites. Energy & Sites, 2020, 34, 16320-16329.	2.5	20
6	Linking defects, hierarchical porosity generation and desalination performance in metal–organic frameworks. Chemical Science, 2018, 9, 3508-3516.	3.7	65
7	Control of Structure Topology and Spatial Distribution of Biomacromolecules in Protein@ZIF-8 Biocomposites. Chemistry of Materials, 2018, 30, 1069-1077.	3.2	146
8	Metal–Organic Frameworks for Cell and Virus Biology: A Perspective. ACS Nano, 2018, 12, 13-23.	7.3	214
9	Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 918-931.	5. 2	151
10	Metal–Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 31225-31232.	4.0	57
11	Photoresponsive spiropyran-functionalised MOF-808: postsynthetic incorporation and light dependent gas adsorption properties. Journal of Materials Chemistry A, 2016, 4, 10816-10819.	5. 2	114
12	Defect engineering of UiO-66 for CO ₂ and H ₂ O uptake – a combined experimental and simulation study. Dalton Transactions, 2016, 45, 4496-4500.	1.6	171
13	Site Isolation Leads to Stable Photocatalytic Reduction of CO ₂ over a Rheniumâ€Based Catalyst. Chemistry - A European Journal, 2015, 21, 18576-18579.	1.7	30
14	Concentration-Dependent Binding of CO ₂ and CD ₄ in UiO-66(Zr). Journal of Physical Chemistry C, 2015, 119, 6980-6987.	1.5	19
15	Tuning the cavities of zirconium-based MIL-140 frameworks to modulate CO ₂ adsorption. Chemical Communications, 2015, 51, 11286-11289.	2,2	47
16	The first example of a zirconium-oxide based metalâ€"organic framework constructed from monocarboxylate ligands. Dalton Transactions, 2015, 44, 1516-1519.	1.6	26
17	Tuning pore size in a zirconium–tricarboxylate metal–organic framework. CrystEngComm, 2014, 16, 6530-6533.	1.3	84
18	Microwave-Assisted Solvothermal Synthesis and Optical Properties of Tagged MIL-140A Metal–Organic Frameworks. Inorganic Chemistry, 2013, 52, 12878-12880.	1.9	72

WEIBIN LIANG

#	Article	IF	CITATIONS
19	Microwave-assisted solvothermal synthesis of zirconium oxide based metal–organic frameworks. Chemical Communications, 2013, 49, 3706.	2.2	108
20	Biogenic synthesis of photocatalytically active Ag/TiO2 and Au/TiO2 composites. Green Chemistry, 2012, 14, 968.	4.6	49
21	Facile size and shape control of templated Au nanoparticles under microwave irradiation. Materials Letters, 2011, 65, 2307-2310.	1.3	12