List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3626001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Endocrine Regulation of Aging by Insulin-like Signals. Science, 2003, 299, 1346-1351.	6.0	1,204
2	Dwarf mice and the ageing process. Nature, 1996, 384, 33-33.	13.7	955
3	The Critical Role of Metabolic Pathways in Aging. Diabetes, 2012, 61, 1315-1322.	0.3	647
4	Interventions to Slow Aging in Humans: Are We Ready?. Aging Cell, 2015, 14, 497-510.	3.0	481
5	Extending the lifespan of long-lived mice. Nature, 2001, 414, 412-412.	13.7	378
6	Life Extension in the Dwarf Mouse. Current Topics in Developmental Biology, 2004, 63, 189-225.	1.0	298
7	Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7901-7905.	3.3	292
8	Minireview: Role of the Growth Hormone/Insulin-Like Growth Factor System in Mammalian Aging. Endocrinology, 2005, 146, 3718-3723.	1.4	286
9	Delayed Occurrence of Fatal Neoplastic Diseases in Ames Dwarf Mice: Correlation to Extended Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2003, 58, B291-B296.	1.7	265
10	Somatotropic Signaling: Trade-Offs Between Growth, Reproductive Development, and Longevity. Physiological Reviews, 2013, 93, 571-598.	13.1	252
11	Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E23-E29.	1.8	224
12	Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell, 2006, 5, 413-422.	3.0	221
13	Long-Lived Growth Hormone Receptor Knockout Mice: Interaction of Reduced Insulin-Like Growth Factor I/Insulin Signaling and Caloric Restriction. Endocrinology, 2005, 146, 851-860.	1.4	216
14	Reduced Incidence and Delayed Occurrence of Fatal Neoplastic Diseases in Growth Hormone Receptor/Binding Protein Knockout Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 522-529.	1.7	206
15	Diet and Aging. Cell Metabolism, 2008, 8, 99-104.	7.2	201
16	Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms. PLoS Genetics, 2008, 4, e1000161.	1.5	178
17	Human placental growth hormone causes severe insulin resistance in transgenic mice. American Journal of Obstetrics and Gynecology, 2002, 186, 512-517.	0.7	175
18	Can Growth Hormone (GH) Accelerate Aging? Evidence from GH-Transgenic Mice. Neuroendocrinology, 2003, 78, 210-216.	1.2	170

#	Article	IF	CITATIONS
19	Histology of the anterior hypophysis, thyroid and gonads of two types of dwarf mice. The Anatomical Record, 1964, 149, 225-235.	2.3	168
20	The key role of growth hormone–insulin–IGF-1 signaling in aging and cancer. Critical Reviews in Oncology/Hematology, 2013, 87, 201-223.	2.0	168
21	Duration of Rapamycin Treatment Has Differential Effects on Metabolism in Mice. Cell Metabolism, 2013, 17, 456-462.	7.2	165
22	The Ames Dwarf Gene Is Required for Pit-1 Gene Activation. Developmental Biology, 1995, 172, 495-503.	0.9	160
23	Reduced Levels of Thyroid Hormones, Insulin, and Glucose, and Lower Body Core Temperature in the Growth Hormone Receptor/Binding Protein Knockout Mouse. Experimental Biology and Medicine, 2001, 226, 552-558.	1.1	159
24	Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology, 2003, 4, 1-8.	2.0	153
25	Time to Talk SENS: Critiquing the Immutability of Human Aging. Annals of the New York Academy of Sciences, 2002, 959, 452-462.	1.8	152
26	Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11299-11304.	3.3	151
27	Genes That Prolong Life: Relationships of Growth Hormone and Growth to Aging and Life Span. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2001, 56, B340-B349.	1.7	146
28	Local expression of GH and IGF-1 in the hippocampus of GH-deficient long-lived mice. Neurobiology of Aging, 2005, 26, 929-937.	1.5	145
29	Effect of ethyl alcohol on plasma testosterone level in mice. Steroids, 1974, 23, 921-928.	0.8	144
30	Morphometric Studies on Hamster Testes in Gonadally Active and Inactive States: Light Microscope Findings1. Biology of Reproduction, 1988, 39, 1225-1237.	1.2	144
31	The Consequences of Altered Somatotropic System on Reproduction1. Biology of Reproduction, 2004, 71, 17-27.	1.2	141
32	Pituitary and Testicular Function in Growth Hormone Receptor Gene Knockout Mice *. Endocrinology, 1999, 140, 1082-1088.	1.4	139
33	Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1882-H1894.	1.5	139
34	Additive regulation of hepatic gene expression by dwarfism and caloric restriction. Physiological Genomics, 2004, 17, 307-315.	1.0	136
35	Antioxidative Mechanisms and Plasma Growth Hormone Levels: Potential Relationship in the Aging Process. Endocrine, 1999, 11, 41-48.	2.2	135
36	The Role of GH in Adipose Tissue: Lessons from Adipose-Specific GH Receptor Gene-Disrupted Mice. Molecular Endocrinology, 2013, 27, 524-535.	3.7	131

#	Article	IF	CITATIONS
37	Evidence for Down-Regulation of Phosphoinositide 3-Kinase/Akt/Mammalian Target of Rapamycin (PI3K/Akt/mTOR)-Dependent Translation Regulatory Signaling Pathways in Ames Dwarf Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 293-300.	1.7	129
38	Ethanol, nicotine, amphetamine, and aspartame consumption and preferences in C57BL/6 and DBA/2 mice. Pharmacology Biochemistry and Behavior, 1995, 50, 619-626.	1.3	128
39	Impact of reduced insulinâ€like growth factorâ€1/insulin signaling on aging in mammals: novel findings. Aging Cell, 2008, 7, 285-290.	3.0	126
40	Insulin and aging. Cell Cycle, 2008, 7, 3338-3343.	1.3	126
41	Liver-Specific GH Receptor Gene-Disrupted (LiGHRKO) Mice Have Decreased Endocrine IGF-I, Increased Local IGF-I, and Altered Body Size, Body Composition, and Adipokine Profiles. Endocrinology, 2014, 155, 1793-1805.	1.4	125
42	Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis. Cell Metabolism, 2019, 30, 1024-1039.e6.	7.2	125
43	Alterations in Oxygen Consumption, Respiratory Quotient, and Heat Production in Long-Lived GHRKO and Ames Dwarf Mice, and Short-Lived bGH Transgenic Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 443-451.	1.7	124
44	Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB Journal, 2010, 24, 5073-5079.	0.2	124
45	Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice. ELife, 2013, 2, e01098.	2.8	119
46	Consequences of growth hormone (CH) overexpression and GH resistance. Neuropeptides, 2002, 36, 201-208.	0.9	116
47	Disruption of Growth Hormone Receptor Prevents Calorie Restriction from Improving Insulin Action and Longevity. PLoS ONE, 2009, 4, e4567.	1.1	116
48	Sex Differences in Longevity and in Responses to Anti-Aging Interventions: A Mini-Review. Gerontology, 2016, 62, 40-46.	1.4	114
49	Gene Expression Patterns in Calorically Restricted Mice: Partial Overlap with Long-Lived Mutant Mice. Molecular Endocrinology, 2002, 16, 2657-2666.	3.7	111
50	What evidence is there for the existence of individual genes with antagonistic pleiotropic effects?. Mechanisms of Ageing and Development, 2005, 126, 421-429.	2.2	109
51	Growth Hormone Deficiency: Health and Longevity. Endocrine Reviews, 2019, 40, 575-601.	8.9	108
52	Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging, 2014, 6, 575-586.	1.4	107
53	The response of two types of dwarf mice to growth hormone, thyrotropin, and thyroxine. General and Comparative Endocrinology, 1965, 5, 418-426.	0.8	100
54	Alterations in Neuroendocrine Function During Photoperiod Induced Testicular Atrophy and Recrudescence in the Golden Hamster1. Biology of Reproduction, 1982, 26, 437-444.	1.2	98

#	Article	IF	CITATIONS
55	Induction of Endogenous Insulin-Like Growth Factor-I Secretion Alters the Hypothalamic-Pituitary-Testicular Function in Growth Hormone-Deficient Adult Dwarf Mice1. Biology of Reproduction, 1993, 48, 544-551.	1.2	98
56	Effects of growth hormone on hypothalamic catalase and Cu/Zn superoxide dismutase1. Free Radical Biology and Medicine, 2000, 28, 970-978.	1.3	98
57	Increased Neurogenesis in Dentate Gyrus of Long-Lived Ames Dwarf Mice. Endocrinology, 2005, 146, 1138-1144.	1.4	97
58	Metabolic effects of intraâ€abdominal fat in GHRKO mice. Aging Cell, 2012, 11, 73-81.	3.0	97
59	MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging Cell, 2010, 9, 1-18.	3.0	95
60	Adipocytokines and Lipid Levels in Ames Dwarf and Calorie-Restricted Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 323-331.	1.7	94
61	Single-gene mutations and healthy ageing in mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 28-34.	1.8	94
62	Fertility of Transgenic Female Mice Expressing Bovine Growth Hormone or Human Growth Hormone Variant Genes1. Biology of Reproduction, 1991, 45, 178-187.	1.2	88
63	Delayed Aging in Ames Dwarf Mice. Relationships to Endocrine Function and Body Size. Results and Problems in Cell Differentiation, 2000, 29, 181-202.	0.2	88
64	Growth Hormone and Aging: Updated Review. World Journal of Men?s Health, 2019, 37, 19.	1.7	87
65	Neuroendocrine and Reproductive Consequences of Overexpression of Growth Hormone in Transgenic Mice. Experimental Biology and Medicine, 1994, 206, 345-359.	1.1	86
66	Long-lived Klotho mice: new insights into the roles of IGF-1 and insulin in aging. Trends in Endocrinology and Metabolism, 2006, 17, 33-35.	3.1	86
67	Insulin Sensitivity as a Key Mediator of Growth Hormone Actions on Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 516-521.	1.7	86
68	Adipocytokines and the Regulation of Lipid Metabolism in Growth Hormone Transgenic and Calorie-Restricted Mice. Endocrinology, 2007, 148, 2845-2853.	1.4	84
69	Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E488-E495.	1.8	82
70	GH and IGF1: Roles in Energy Metabolism of Long-Living GH Mutant Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67A, 652-660.	1.7	82
71	Assessment of the Primary Adrenal Cortical and Pancreatic Hormone Basal Levels in Relation to Plasma Glucose and Age in the Unstressed Ames Dwarf Mouse. Experimental Biology and Medicine, 1995, 210, 126-133.	1.1	79
72	Effects of Growth Hormone Overexpression and Growth Hormone Resistance on Neuroendocrine and Reproductive Functions in Transgenic and Knock-Out Mice2. Proceedings of the Society for Experimental Biology and Medicine, 1999, 222, 113-123.	2.0	79

#	Article	IF	CITATIONS
73	Growth hormone and aging: A challenging controversy. Clinical Interventions in Aging, 2008, Volume 3, 659-665.	1.3	77
74	Growth Hormone Receptor Deficiency Protects against Age-Related NLRP3 Inflammasome Activation and Immune Senescence. Cell Reports, 2016, 14, 1571-1580.	2.9	77
75	Amyloid Beta-Related Alterations to Glutamate Signaling Dynamics During Alzheimer's Disease Progression. ASN Neuro, 2019, 11, 175909141985554.	1.5	77
76	Stress resistance and aging: Influence of genes and nutrition. Mechanisms of Ageing and Development, 2006, 127, 687-694.	2.2	75
77	Functional Compensation by Egr4 in Egr1 -Dependent Luteinizing Hormone Regulation and Leydig Cell Steroidogenesis. Molecular and Cellular Biology, 2000, 20, 5261-5268.	1.1	73
78	Endogenous Human Growth Hormone (GH) Modulates the Effect of Gonadotropin-Releasing Hormone on Pituitary Function and the Gonadotropin Response to the Negative Feedback Effect of Testosterone in Adult Male Transgenic Mice Bearing Human GH Gene*. Endocrinology, 1988, 123, 2717-2722.	1.4	71
79	Hypothalamic-Pituitary Axis Regulates Hydrogen Sulfide Production. Cell Metabolism, 2017, 25, 1320-1333.e5.	7.2	71
80	Metabolic characteristics of long-lived mice. Frontiers in Genetics, 2012, 3, 288.	1.1	70
81	Growth hormone modulates hypothalamic inflammation in longâ€ŀived pituitary dwarf mice. Aging Cell, 2015, 14, 1045-1054.	3.0	70
82	Impact of Growth Hormone Resistance on Female Reproductive Function: New Insights from Growth Hormone Receptor Knockout Mice1. Biology of Reproduction, 2002, 67, 1115-1124.	1.2	68
83	Growth hormone, inflammation and aging. Pathobiology of Aging & Age Related Diseases, 2012, 2, 17293.	1.1	68
84	IGF-I regulates the age-dependent signaling peptide humanin. Aging Cell, 2014, 13, 958-961.	3.0	68
85	Effects of Δ9-tetrahydrocannabinol on copulatory behavior and neuroendocrine responses of male rats to female conspecifics. Pharmacology Biochemistry and Behavior, 1994, 48, 1011-1017.	1.3	66
86	Long-Lived Growth Hormone Receptor Knockout Mice Show a Delay in Age-Related Changes of Body Composition and Bone Characteristics. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 562-567.	1.7	66
87	Immunohistological study of the anterior pituitary gland ? pars distalis and pars intermedia ? in dwarf mice. Cell and Tissue Research, 1982, 223, 415-420.	1.5	65
88	Caloric Restriction Results in Decreased Expression of Peroxisome Proliferator-Activated Receptor Superfamily in Muscle of Normal and Long-Lived Growth Hormone Receptor/Binding Protein Knockout Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 1238-1245.	1.7	65
89	Biological Approaches to Mechanistically Understand the Healthy Life Span Extension Achieved by Calorie Restriction and Modulation of Hormones. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 187-191.	1.7	65
90	Effects of Delta-9-Tetrahydrocannabinol, Cannabinol and Cannabidiol, Alone and in Combinations, on Luteinizing Hormone and Prolactin Release and on Hypothalamic Neurotransmitters in the Male Rat. Neuroendocrinology, 1990, 52, 316-321.	1.2	64

#	Article	IF	CITATIONS
91	Body Composition of Prolactin-, Growth Hormone-, and Thyrotropin-Deficient Ames Dwarf Mice. Endocrine, 2003, 20, 149-154.	2.2	64
92	Neuroendocrine regulation of seasonal reproductive activity in the male golden hamster. Neuroscience and Biobehavioral Reviews, 1985, 9, 191-201.	2.9	62
93	The seasonal breeding hamster as a model to study structure-function relationships in the testis. Tissue and Cell, 1988, 20, 63-78.	1.0	62
94	Effects of caloric restriction on insulin pathway gene expression in the skeletal muscle and liver of normal and long-lived GHR-KO mice. Experimental Gerontology, 2005, 40, 679-684.	1.2	62
95	Play, copulation, anatomy, and testosterone in gonadally intact male rats prenatally exposed to flutamide. Physiology and Behavior, 2003, 79, 633-641.	1.0	61
96	Age-related cataract progression in five mouse models for anti-oxidant protection or hormonal influence. Experimental Eye Research, 2005, 81, 276-285.	1.2	60
97	Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues. Mechanisms of Ageing and Development, 2008, 129, 528-533.	2.2	60
98	Healthy Aging: Is Smaller Better? – A Mini-Review. Gerontology, 2012, 58, 337-343.	1.4	60
99	Evidence for episodic secretion of testosterone in laboratory mice. Steroids, 1975, 26, 749-756.	0.8	59
100	Regulation of Testicular Prolactin and Luteinizing Hormone Receptors in Golden Hamsters*. Endocrinology, 1984, 114, 594-603.	1.4	58
101	Role of growth hormone and prolactin in the control of reproduction: What are we learning from transgenic and knock-out animals?1. Steroids, 1999, 64, 598-604.	0.8	58
102	Effects of Soy-derived Diets on Plasma and Liver Lipids, Glucose Tolerance, and Longevity in Normal, Long-lived and Short-lived Mice. Hormone and Metabolic Research, 2004, 36, 550-558.	0.7	58
103	The growth hormone receptor geneâ€disrupted mouse fails to respond to an intermittent fasting diet. Aging Cell, 2009, 8, 756-760.	3.0	58
104	Effects of Chronic Hyperprolactinemia in Mice on Plasma Gonadotropin Concentrations and Testicular Human Chorionic Gonadotropin Binding Sites*. Endocrinology, 1981, 108, 1763-1768.	1.4	57
105	Testosterone Plus Low-Intensity Physical Training in Late Life Improves Functional Performance, Skeletal Muscle Mitochondrial Biogenesis, and Mitochondrial Quality Control in Male Mice. PLoS ONE, 2012, 7, e51180.	1.1	55
106	Catecholamine Effects on Testicular Testosterone Production in the Gonadally Active and the Gonadally Regressed Adult Golden Hamster1. Biology of Reproduction, 1989, 40, 752-761.	1.2	54
107	Evidence That Growth Hormone Exerts a Feedback Effect on Stomach Ghrelin Production and Secretion. Experimental Biology and Medicine, 2003, 228, 1028-1032.	1.1	54
108	GH and ageing: Pitfalls and new insights. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 113-125.	2.2	54

#	Article	IF	CITATIONS
109	Concentration of Testosterone in Testis Fluid of the Rat1. Endocrinology, 1974, 95, 701-706.	1.4	53
110	Ovarian Follicle Apoptosis in Bovine Growth Hormone Transgenic Mice1. Biology of Reproduction, 2000, 62, 103-107.	1.2	53
111	Divergent Effects of Caloric Restriction on Gene Expression in Normal and Long-Lived Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, B784-B788.	1.7	53
112	Suppression of Pulsatile LH Secretion, Pituitary GnRH Receptor Content and Pituitary Responsiveness to GnRH by Hyperprolactinemia in the Male Rat. Neuroendocrinology, 1987, 46, 350-359.	1.2	52
113	PPARs in Calorie Restricted and Genetically Long-Lived Mice. PPAR Research, 2007, 2007, 1-7.	1.1	52
114	Influence of photoperiod and gonadal steroids on hibernation in the European hamster. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1988, 163, 339-348.	0.7	51
115	Endocrine regulation of heat shock protein mRNA levels in long-lived dwarf mice. Mechanisms of Ageing and Development, 2009, 130, 393-400.	2.2	50
116	Pleiotropic effects of growth hormone signaling in aging. Trends in Endocrinology and Metabolism, 2011, 22, 437-442.	3.1	50
117	Effect of caloric restriction and rapamycin on ovarian aging in mice. GeroScience, 2019, 41, 395-408.	2.1	50
118	Longevity is impacted by growth hormone action during early postnatal period. ELife, 2017, 6, .	2.8	50
119	Reproductive Effects of Olfactory Bulbectomy in the Syrian Hamster1. Biology of Reproduction, 1986, 35, 1202-1209.	1.2	49
120	Long-living growth hormone receptor knockout mice: Potential mechanisms of altered stress resistance. Experimental Gerontology, 2009, 44, 10-19.	1.2	48
121	The negative effect of prolonged somatotrophic/insulin signaling on an adult bone marrow-residing population of pluripotent very small embryonic-like stem cells (VSELs). Age, 2013, 35, 315-330.	3.0	48
122	Adiponectin in mice with altered GH action: links to insulin sensitivity and longevity?. Journal of Endocrinology, 2013, 216, 363-374.	1.2	48
123	The somatotropic axis and aging: Benefits of endocrine defects. Growth Hormone and IGF Research, 2016, 27, 41-45.	0.5	48
124	Metabolic Syndrome and Skin Diseases. Frontiers in Endocrinology, 2019, 10, 788.	1.5	48
125	Effects of Bovine Growth Hormone (bGH) Transgene Expression or bGH Treatment on Reproductive Functions in Female Mice1. Biology of Reproduction, 1995, 52, 1144-1148.	1.2	47
126	Growth hormone, insulin and aging: The benefits of endocrine defects. Experimental Gerontology, 2011, 46, 108-111.	1.2	47

#	Article	IF	CITATIONS
127	The contribution of visceral fat to improved insulin signaling in Ames dwarf mice. Aging Cell, 2014, 13, 497-506.	3.0	46
128	Removal of growth hormone receptor (GHR) in muscle of male mice replicates some of the health benefits seen in global GHRâ î/â îmice. Aging, 2015, 7, 500-512.	1.4	46
129	Effects of Estrogen-Induced Hyperprolactinemia on Endocrine and Sexual Functions in Adult Male Rats. Neuroendocrinology, 1984, 39, 126-135.	1.2	45
130	Effects of Heterologous Growth Hormones on Hypothalamic and Pituitary Function in Transgenic Mice. Neuroendocrinology, 1991, 53, 365-372.	1.2	45
131	Brown Adipose Tissue Function Is Enhanced in Long-Lived, Male Ames Dwarf Mice. Endocrinology, 2016, 157, 4744-4753.	1.4	45
132	Effects of Caloric Restriction and Growth Hormone Resistance on Insulin-Related Intermediates in the Skeletal Muscle. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 18-26.	1.7	44
133	Postâ€ŧranscriptional regulation of IGF1R by key microRNAs in long–lived mutant mice. Aging Cell, 2011, 10, 1080-1088.	3.0	44
134	Puberty is delayed in male growth hormone receptor gene-disrupted mice. Journal of Andrology, 2002, 23, 661-8.	2.0	44
135	Effects of Hyperprolactinemia on the Control of Luteinizing Hormone and Follicle-Stimulating Hormone Secretion in the Male Rat1. Biology of Reproduction, 1987, 36, 138-147.	1.2	43
136	Increased glial fibrillary acidic protein (GFAP) levels in the brains of transgenic mice expressing the bovine growth hormone (bCH) gene. Experimental Gerontology, 1995, 30, 383-400.	1.2	43
137	Dietâ€induced insulin resistance elevates hippocampal glutamate as well as <scp>VGLUT</scp> 1 and <scp>GFAP</scp> expression in Aβ <scp>PP</scp> / <scp>PS</scp> 1 mice. Journal of Neurochemistry, 2019, 148, 219-237.	2.1	42
138	Male Hamster Reproductive Endocrinology. , 1985, , 73-98.		42
139	Effects of one-stage or serial transections of the lateral olfactory tracts on behavior and plasma testosterone levels in male hamsters. Brain Research, 1976, 109, 97-109.	1.1	41
140	Somatotroph and Lactotroph Changes in the Adenohypophyses of Mice with Disrupted Insulin-Like Growth Factor I Gene ¹ . Endocrinology, 1999, 140, 3881-3889.	1.4	41
141	Epithelial Defect in Prostates of Stat5a-Null Mice. Laboratory Investigation, 2000, 80, 993-1006.	1.7	41
142	Testicular Endocrine Function in GH Receptor Gene Disrupted Mice. Endocrinology, 2001, 142, 3443-3450.	1.4	41
143	A novel insight into aging: are there pluripotent very small embryonic-like stem cells (VSELs) in adult tissues overtime depleted in an lgf-1-dependent manner?. Aging, 2010, 2, 875-883.	1.4	41
144	FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice. Nature Communications, 2022, 13, 1897.	5.8	41

#	Article	IF	CITATIONS
145	Prolactin Modulates the Gonadotropin Response to the Negative Feedback Effect of Testosterone in Immature Male Rats*. Endocrinology, 1987, 120, 758-763.	1.4	40
146	Elevated Corticosterone Levels in Transgenic Mice Expressing Human or Bovine Growth Hormone Genes. Neuroendocrinology, 1991, 53, 313-316.	1.2	40
147	Is Altered Expression of Hepatic Insulin-Related Genes in Growth Hormone Receptor Knockout Mice Due to GH Resistance or a Difference in Biological Life Spans?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 1126-1133.	1.7	40
148	Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone. Cell Cycle, 2013, 12, 1042-1057.	1.3	40
149	Effects of rapamycin on growth hormone receptor knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1495-E1503.	3.3	40
150	Influence of endogenous prolactin on the luteinizing hormone stimulation of testicular steroidogenesis and the role of prolactin in adult male rats. Steroids, 1988, 51, 559-576.	0.8	39
151	HISTAMINE AFFECTS TESTICULAR STEROID PRODUCTION IN THE GOLDEN HAMSTER. Endocrinology, 1989, 125, 2212-2214.	1.4	39
152	An Immunocytochemical and Ultrastructural Study of Adenohypophyses of Mice Transgenic for Human Growth Hormone*. Endocrinology, 1990, 126, 608-615.	1.4	39
153	Inhibitory Avoidance and Appetitive Learning in Aged Normal Mice: Comparison with Transgenic Mice Having Elevated Plasma Growth Hormone Levels. Neurobiology of Learning and Memory, 1997, 68, 1-12.	1.0	39
154	Growth Hormone and Aging. Endocrine, 1998, 8, 103-108.	2.2	39
155	Caloric restriction and growth hormone receptor knockout: Effects on expression of genes involved in insulin action in the heart. Experimental Gerontology, 2006, 41, 417-429.	1.2	39
156	Role of the Testis in Regulating the Duration of Hibernation in the Turkish Hamster, Mesocricetus brandti1. Biology of Reproduction, 1982, 27, 802-810.	1.2	38
157	Catecholamines Stimulate Testicular Steroidogenesis in Vitro in the Siberian Hamster, Phodopus Sungorus1. Biology of Reproduction, 1993, 48, 883-888.	1.2	38
158	Infertility in Transgenic Mice Overexpressing the Bovine Growth Hormone Gene: Luteal Failure Secondary to Prolactin Deficiency1. Biology of Reproduction, 1995, 52, 1162-1166.	1.2	38
159	Smaller cardiac cell size and reduced extra-cellular collagen might be beneficial for hearts of Ames dwarf mice. International Journal of Biological Sciences, 2010, 6, 475-490.	2.6	38
160	Prolonged Growth Hormone/Insulin/Insulin-like Growth Factor Nutrient Response Signaling Pathway as a Silent Killer of Stem Cells and a Culprit in Aging. Stem Cell Reviews and Reports, 2017, 13, 443-453.	5.6	38
161	The Influence of β-Endorphin on Testicular Endocrine Function in Adult Rats1. Biology of Reproduction, 1992, 47, 1-5.	1.2	37
162	Sertoli cells in testes containing or lacking germ cells: A comparative study of paracrine effects using the W (c-kit) gene mutant mouse model. The Anatomical Record, 1994, 240, 225-232.	2.3	37

#	Article	IF	CITATIONS
163	Expression of Key Regulators of Mitochondrial Biogenesis in Growth Hormone Receptor Knockout (GHRKO) Mice is Enhanced but is Not Further Improved by Other Potential Life-Extending Interventions. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 1062-1076.	1.7	37
164	Rapamycin slows aging in mice. Cell Cycle, 2012, 11, 845-845.	1.3	37
165	Somatic growth, aging, and longevity. Npj Aging and Mechanisms of Disease, 2017, 3, 14.	4.5	37
166	Effects of Caloric Restriction and Growth Hormone Resistance on the Expression Level of Peroxisome Proliferator-Activated Receptors Superfamily in Liver of Normal and Long-Lived Growth Hormone Receptor/Binding Protein Knockout Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 1394-1398.	1.7	36
167	Plasma Prolactin Concentrations and Testicular Human Chorionic Gonadotropin Binding Sites During Short Photoperiod-Induced Testicular Regression and Recrudescence in the Golden Hamster1. Biology of Reproduction, 1981, 25, 536-548.	1.2	35
168	Effects of Long-Term Caloric Restriction on Early Steps of the Insulin-Signaling System in Mouse Skeletal Muscle. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 28-34.	1.7	35
169	Longâ€lived hypopituitary Ames dwarf mice are resistant to the detrimental effects of highâ€fat diet on metabolic function and energy expenditure. Aging Cell, 2016, 15, 509-521.	3.0	35
170	Impact papers on aging in 2009. Aging, 2010, 2, 111-121.	1.4	35
171	Increased serum prolactin levels mediate the suppressive effects of ectopic pituitary grafts on copulatory behavior in male rats. Hormones and Behavior, 1985, 19, 111-121.	1.0	34
172	Influence of Hypothalamus and Ovary on Pituitary Function in Transgenic Mice Expressing the Bovine Growth Hormone Gene and in Growth Hormone-Deficient Ames Dwarf Mice1. Biology of Reproduction, 1996, 54, 1002-1008.	1.2	34
173	Is growth hormone deficiency a beneficial adaptation to aging? Evidence from experimental animals. Trends in Endocrinology and Metabolism, 2003, 14, 340-344.	3.1	34
174	Adult Neurogenesis in the Hippocampus of Long-Lived Mice During Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 117-125.	1.7	34
175	Fibroblasts from long-lived mutant mice show diminished ERK1/2 phosphorylation but exaggerated induction of immediate early genes. Free Radical Biology and Medicine, 2009, 47, 1753-1761.	1.3	34
176	Growth hormone modulation of EGF-induced PI3K-Akt pathway in mice liver. Cellular Signalling, 2012, 24, 514-523.	1.7	34
177	Impact of Growth Hormone-Related Mutations on Mammalian Aging. Frontiers in Genetics, 2018, 9, 586.	1.1	34
178	Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver. Aging, 2015, 7, 195-204.	1.4	34
179	Alterations in oxidative, inflammatory and apoptotic events in short-lived and long-lived mice testes. Aging, 2016, 8, 95-110.	1.4	34
180	Prolactin changes Cholesterol Stores in the Mouse Testis. Nature, 1969, 224, 700-701.	13.7	33

#	Article	IF	CITATIONS
181	Changes in the testicular microvasculature during photoperiod-related seasonal transition from reproductive quiescence to reproductive activity in the adult golden hamster. The Anatomical Record, 1989, 224, 495-507.	2.3	33
182	The dwarf mutation decreases high dose insulin responses in skeletal muscle, the opposite of effects in liver. Mechanisms of Ageing and Development, 2003, 124, 819-827.	2.2	33
183	Prolactin in the Male: 25 Years Later. Journal of Andrology, 2004, 25, 661-666.	2.0	33
184	Transgenic mice overexpressing GH exhibit hepatic upregulation of GH-signaling mediators involved in cell proliferation. Journal of Endocrinology, 2008, 198, 317-330.	1.2	33
185	Mechanism of induction of luteal phase defects by danazol. American Journal of Obstetrics and Gynecology, 1980, 136, 932-937.	0.7	32
186	Alterations in the early steps of the insulin-signaling system in skeletal muscle of GH-transgenic mice. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E447-E454.	1.8	32
187	Long-lived Ames dwarf mice: Oxidative damage to mitochondrial DNA in heart and brain. Age, 2002, 25, 119-122.	3.0	32
188	Effects of Dietary Restriction on the Expression of Insulin-Signaling-Related Genes in Long-Lived Mutant Mice. , 2006, 35, 69-82.		32
189	Long-lived crowded-litter mice exhibit lasting effects on insulin sensitivity and energy homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1305-E1314.	1.8	32
190	Pituitary and Testicular Function in Growth Hormone Receptor Gene Knockout Mice. , 0, .		32
191	Effects of Testosterone and Dihydrotestosterone on Spermatogenesis, Rete Testis Fluid, and Peripheral Androgen Levels in Hypophysectomized Rats. Fertility and Sterility, 1977, 28, 1113-1117.	0.5	31
192	Reinitiation of spermatogenesis by exogenous gonadotropins in a seasonal breeder, the woodchuck (Marmota monax), during gonadal inactivity. American Journal of Anatomy, 1991, 192, 194-213.	0.9	31
193	Temporal Sequence of Neuroendocrine Events Associated with the Transfer of Male Golden Hamsters from a Stimulatory to a Nonstimulatory Photoperiod1. Biology of Reproduction, 1991, 44, 76-82.	1.2	31
194	Effects of long-term caloric restriction on glucose homeostasis and on the first steps of the insulin signaling system in skeletal muscle of normal and Ames dwarf (Prop1df/Prop1df) mice. Experimental Gerontology, 2005, 40, 27-35.	1.2	31
195	Effects of transgenes for human and bovine growth hormones on age-related changes in ovarian morphology in mice. The Anatomical Record, 1990, 227, 175-186.	2.3	30
196	Effect of Photoperiod on the Size of the Leydig Cell Population and the Rate of Recruitment of Leydig Cells in Adult Syrian Hamsters1. Biology of Reproduction, 1987, 37, 727-738.	1.2	29
197	The somatotropic axis and aging: Mechanisms and persistent questions about practical implications. Experimental Gerontology, 2009, 44, 372-374.	1.2	29
198	Effects of Growth Hormone and Thyroxine Replacement Therapy on Insulin Signaling in Ames Dwarf Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 344-352.	1.7	29

#	Article	IF	CITATIONS
199	Prevention of Neuromusculoskeletal Frailty in Slow-Aging Ames Dwarf Mice: Longitudinal Investigation of Interaction of Longevity Genes and Caloric Restriction. PLoS ONE, 2013, 8, e72255.	1.1	29
200	Growth hormone abolishes beneficial effects of calorie restriction in long-lived Ames dwarf mice. Experimental Gerontology, 2014, 58, 219-229.	1.2	29
201	The enigmatic role of growth hormone in age-related diseases, cognition, and longevity. GeroScience, 2019, 41, 759-774.	2.1	29
202	Effects of Prostaglandin F2 on Pseudopregnancy and Pregnancy in Mice. Fertility and Sterility, 1972, 23, 543-547.	0.5	28
203	Reproductive Endocrinology of the Mink (<i>Mustela vison</i>). Endocrine Reviews, 1988, 9, 247-266.	8.9	28
204	The Role of Growth Hormone in the Control of Gonadotropin Secretion in Adult Male Rats*. Endocrinology, 1998, 139, 1067-1074.	1.4	28
205	How diet interacts with longevity genes. Hormones, 2008, 7, 17-23.	0.9	28
206	Individual differences in the maternal behavior of male mice: No evidence for a relationship to circulating testosterone levels. Hormones and Behavior, 1977, 8, 372-376.	1.0	27
207	Prolonged Suppression of Plasma LH Levels in Male Rats after a Single Injection of an LHâ€RH Agonist in Poly(DLâ€Lactideâ€Coâ€Glycolide) Microcapsules. Journal of Andrology, 1985, 6, 83-88.	2.0	27
208	Structural response of the hamster Sertoli cell to hypophysectomy: A correlative morphometric and endocrine study. The Anatomical Record, 1992, 234, 513-529.	2.3	27
209	Suppression of Growth Hormone (GH) Janus Tyrosine Kinase 2/Signal Transducer and Activator of Transcription 5 Signaling Pathway in Transgenic Mice Overexpressing Bovine GH. Endocrinology, 2004, 145, 2824-2832.	1.4	27
210	Insulin Signaling Cascade in the Hearts of Long-Lived Growth Hormone Receptor Knockout Mice: Effects of Calorie Restriction. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 788-797.	1.7	27
211	In vivo analysis of gene expression in long-lived mice lacking the pregnancy-associated plasma protein A (PappA) gene. Experimental Gerontology, 2010, 45, 366-374.	1.2	27
212	Specific suppression of insulin sensitivity in <i>growth hormone receptor</i> geneâ€disrupted (<scp>GHR</scp> â€ <scp>KO</scp>) mice attenuates phenotypic features of slow aging. Aging Cell, 2014, 13, 981-1000.	3.0	27
213	Effects of Photoperiod, Hypophysectomy, and Follicle-Stimulating Hormone on Testicular Follicle-Stimulating Hormone Binding Sites in Golden Hamsters1. Biology of Reproduction, 1987, 37, 356-370.	1.2	26
214	Neurokinin A levels in the hypothalamus of rats and mice: Effects of castration, gonadal steroids and expression of heterologous growth hormone genes. Brain Research Bulletin, 1990, 25, 717-721.	1.4	26
215	Prolactin (PRL), Follicle-Stimulating Hormone, and Luteinizing Hormone Are Regulators of Testicular PRL Receptors in Golden Hamsters*. Endocrinology, 1986, 118, 773-782.	1.4	25
216	Isolation and Culture of Sertoli Cells from the Testes of Adult Siberian Hamsters: Analysis of Proteins Synthesized and Secreted by Sertoli Cells Cultured from Hamsters Raised in a Long or a Short Photoperiod1. Biology of Reproduction, 1995, 52, 658-666.	1.2	25

#	Article	IF	CITATIONS
217	Glucose homeostasis and insulin sensitivity in growth hormone-transgenic mice: a cross-sectional analysis. Biological Chemistry, 2010, 391, 1149-55.	1.2	25
218	Growth hormone and aging. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 71-80.	2.6	25
219	Riluzole attenuates glutamatergic tone and cognitive decline in AβPP/PS1 mice. Journal of Neurochemistry, 2021, 156, 513-523.	2.1	25
220	RasGrf1: genomic imprinting, VSELs, and aging. Aging, 2011, 3, 692-697.	1.4	25
221	The Influence of Short Photoperiod on Testicular and Circulating Levels of Testosterone Precursors in the Adult Golden Hamster1. Biology of Reproduction, 1989, 40, 300-306.	1.2	24
222	Infertility in Transgenic Mice Overexpressing the Bovine Growth Hormone Gene: Disruption of the Neuroendocrine Control of Prolactin Secretion during Pregnancy1. Biology of Reproduction, 1995, 52, 1187-1192.	1.2	24
223	CH modulates hepatic epidermal growth factor signaling in the mouse. Journal of Endocrinology, 2010, 204, 299-309.	1.2	24
224	Healthspan and longevity can be extended by suppression of growth hormone signaling. Mammalian Genome, 2016, 27, 289-299.	1.0	24
225	Ovarian transcriptome associated with reproductive senescence in the long-living Ames dwarf mice. Molecular and Cellular Endocrinology, 2017, 439, 328-336.	1.6	24
226	Gonadotropin Secretion, Synthesis, and Gene Expression in Two Types of Bovine Growth Hormone Transgenic Mice1. Biology of Reproduction, 1993, 49, 346-353.	1.2	23
227	Immune Function in Transgenic Mice Overexpressing Growth Hormone (GH) Releasing Hormone, GH or GH Antagonist. Proceedings of the Society for Experimental Biology and Medicine, 1999, 221, 178-183.	2.0	23
228	Tachykinins and their possible modulatory role on testicular function: a review. Journal of Developmental and Physical Disabilities, 2003, 26, 202-210.	3.6	23
229	Effect of every other day feeding diet on gene expression in normal and in long-lived Ames dwarf mice. Experimental Gerontology, 2005, 40, 491-497.	1.2	23
230	Effects of mild calorie restriction on reproduction, plasma parameters and hepatic gene expression in mice with altered GH/IGF-I axis. Mechanisms of Ageing and Development, 2007, 128, 317-331.	2.2	23
231	Metabolic Alterations Due to Caloric Restriction and Every Other Day Feeding in Normal and Growth Hormone Receptor Knockout Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 25-33.	1.7	23
232	Changes of Ovarian microRNA Profile in Long-Living Ames Dwarf Mice during Aging. PLoS ONE, 2017, 12, e0169213.	1.1	23
233	Measuring aging rates of mice subjected to caloric restriction and genetic disruption of growth hormone signaling. Aging, 2016, 8, 539-546.	1.4	23
234	Increased plasma corticosterone levels in bovine growth hormone (bGH) transgenic mice: Effects of ACTH, GH and IGF-I onin vitro adrenal corticosterone production. Transgenic Research, 1996, 5, 187-192.	1.3	22

#	Article	IF	CITATIONS
235	Dietary Restriction and Life-Span. Science, 2002, 296, 2141-2142.	6.0	22
236	Age-Related Alterations in Pituitary and Testicular Functions in Long-Lived Growth Hormone Receptor Gene-Disrupted Mice. Endocrinology, 2007, 148, 6019-6025.	1.4	22
237	New findings in gene knockout, mutant and transgenic miceâ~†. Experimental Gerontology, 2008, 43, 11-14.	1.2	22
238	Differential effects of early-life nutrient restriction in long-lived GHR-KO and normal mice. GeroScience, 2017, 39, 347-356.	2.1	22
239	Prolonged Rapamycin treatment led to beneficial metabolic switch. Aging, 2013, 5, 328-329.	1.4	22
240	Hypothalamic catecholamine histofluorescence in dwarf mice. Cell and Tissue Research, 1985, 240, 19-25.	1.5	21
241	Interactions of Photoperiod and Ectopic Pituitary Grafts on Hypothalamic and Pituitary Function in Male Hamsters. Neuroendocrinology, 1985, 41, 89-96.	1.2	21
242	Neuroendocrine Function in Transgenic Male Mice with Human Growth Hormone Expression. Neuroendocrinology, 1990, 52, 106-111.	1.2	21
243	Interactions of Human Growth Hormone and Prolactin on Pituitary and Leydig Cell Function in Adult Transgenic Mice Expressing the Human Growth Hormone Gene1. Biology of Reproduction, 1991, 44, 135-140.	1.2	21
244	Ethanol and nicotine consumption and preference in transgenic mice overexpressing the bovine growth hormone gene. Pharmacology Biochemistry and Behavior, 1995, 50, 563-570.	1.3	21
245	Morphology of ovaries in laron dwarf mice, with low circulating plasma levels of insulin-like growth factor-1 (IGF-1), and in bovine GH-transgenic mice, with high circulating plasma levels of IGF-1. Journal of Ovarian Research, 2012, 5, 18.	1.3	21
246	The slow-aging growth hormone receptor/binding protein gene-disrupted (GHR-KO) mouse is protected from aging-resultant neuromusculoskeletal frailty. Age, 2014, 36, 117-127.	3.0	21
247	The Forgotten Lactogenic Activity of Growth Hormone: Important Implications for Rodent Studies. Endocrinology, 2015, 156, 1620-1622.	1.4	21
248	Inflammatory and Glutamatergic Homeostasis Are Involved in Successful Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 281-289.	1.7	21
249	The role of insulin-like growth factor-I in neuroendocrine function and the consequent effects on sexual maturation: inferences from animal models. Reproductive Biology, 2003, 3, 7-28.	0.9	21
250	Effects of psychoactive and nonpsychoactive cannabinoids on the hypothalamic-pituitary axis of the adult male rat. Pharmacology Biochemistry and Behavior, 1990, 37, 299-302.	1.3	20
251	Vitamin D (Soltriol) receptors in the choroid plexus and ependyma: Their species-specific presence. Molecular and Cellular Neurosciences, 1991, 2, 145-156.	1.0	20
252	Influence of Diabetes on the Gonadotropin Response to the Negative Feedback Effect of Testosterone and Hypothalamic Neurotransmitter Turnover in Adult Male Rats. Neuroendocrinology, 1991, 54, 30-35.	1.2	20

#	Article	IF	CITATIONS
253	The hamster Sertoli cell in early testicular regression and early recrudescence: a stereological and endocrine study. Journal of Developmental and Physical Disabilities, 1994, 17, 93-106.	3.6	20
254	Growth hormone and aging. Age, 2000, 23, 219-225.	3.0	20
255	Soy Isoflavones Modify Liver Free Radical Scavenger Systems and Liver Parameters in Sprague–Dawley Rats. Journal of Medicinal Food, 2004, 7, 477-481.	0.8	20
256	Circulating blood leukocyte gene expression profiles: Effects of the Ames dwarf mutation on pathways related to immunity and inflammation. Experimental Gerontology, 2007, 42, 772-788.	1.2	20
257	Analysis of Different Approaches for the Selection of Reference Genes in RT-qPCR Experiments: A Case Study in Skeletal Muscle of Growing Mice. International Journal of Molecular Sciences, 2017, 18, 1060.	1.8	20
258	Integrated metabolomics reveals altered lipid metabolism in adipose tissue in a model of extreme longevity. GeroScience, 2020, 42, 1527-1546.	2.1	20
259	17α-Estradiol Modulates IGF1 and Hepatic Gene Expression in a Sex-Specific Manner. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 778-785.	1.7	20
260	The effect of calorie restriction on insulin signaling in skeletal muscle and adipose tissue of Ames dwarf mice. Aging, 2014, 6, 900-912.	1.4	20
261	Juvenile male mice: An attempt to accelerate testis function by exposure to adult female stimuli. Physiology and Behavior, 1978, 21, 1009-1013.	1.0	19
262	COMPENSATORY THYROID HYPERPLASIA IN HEMITHYROIDECTOMIZED SNELL DWARF MICE. Endocrinology, 1983, 113, 2317-2319.	1.4	19
263	Neurohypophyseal Vasopressin in the Syrian Hamster: Response to Short Photoperiod, Pinealectomy, Melatonin Treatment, or Osmotic Stimulation. Brain Research Bulletin, 1997, 42, 221-225.	1.4	19
264	Direct and indirect effects of growth hormone receptor ablation on liver expression of xenobiotic metabolizing genes. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E942-E950.	1.8	19
265	A Long-lived Mouse Lacking Both Growth Hormone and Growth Hormone Receptor: A New Animal Model for Aging Studies. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw193.	1.7	19
266	Energy Metabolism and Aging. World Journal of Men?s Health, 2021, 39, 222.	1.7	19
267	Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in longâ€lived mutant mice. FASEB Journal, 2010, 24, 5073-5079.	0.2	19
268	Friend or Foe? Defining the Role of Glutamate in Aging and Alzheimer's Disease. Frontiers in Aging, 0, 3,	1.2	19
269	Interactions of Testosterone and Short-Photoperiod Exposure on the Neuroendocrine Axis of the Male Syrian Hamster. Neuroendocrinology, 1986, 43, 69-74.	1.2	18
270	Effect of Immunoneutralization of Neuropeptide Y on Gonadotropin and Prolactin Secretion in Normal Mice and in Transgenic Mice Bearing Bovine Growth Hormone Gene*. Endocrinology, 1991, 129, 597-602.	1.4	18

#	Article	IF	CITATIONS
271	Developmental aspects of prolactin receptor gene expression in fetal and neonatal mice. European Journal of Endocrinology, 1996, 134, 751-757.	1.9	18
272	Humoral Immune Response in Mice Over-expressing or Deficient in Growth Hormone. Experimental Biology and Medicine, 2002, 227, 535-544.	1.1	18
273	Increased in vivo phosphorylation of insulin receptor at serine 994 in the liver of obese insulin-resistant Zucker rats. Journal of Endocrinology, 2004, 182, 433-444.	1.2	18
274	Do Ames dwarf and calorie-restricted mice share common effects on age-related pathology?. Pathobiology of Aging & Age Related Diseases, 2013, 3, 20833.	1.1	18
275	Female PAPP-A knockout mice are resistant to metabolic dysfunction induced by high-fat/high-sucrose feeding at middle age. Age, 2015, 37, 9765.	3.0	18
276	Transient early food restriction leads to hypothalamic changes in the long-lived crowded litter female mice. Physiological Reports, 2015, 3, e12379.	0.7	18
277	GeneticÂdifferences and longevityâ€related phenotypes influenceÂlifespan and lifespan variationÂin a sexâ€specific mannerÂin mice. Aging Cell, 2020, 19, e13263.	3.0	18
278	Golden hamster myoid cells during active and inactive states of spermatogenesis: Correlation of testosterone levels with structure. American Journal of Anatomy, 1990, 188, 319-327.	0.9	17
279	Key regulators of mitochondrial biogenesis are increased in kidneys of growth hormone receptor knockout (GHRKO) mice. Cell Biochemistry and Function, 2011, 29, 459-467.	1.4	17
280	Decreased expression level of apoptosis-related genes and/or proteins in skeletal muscles, but not in hearts, of growth hormone receptor knockout mice. Experimental Biology and Medicine, 2011, 236, 156-168.	1.1	17
281	Hallmarks of Testicular Aging: The Challenge of Anti-Inflammatory and Antioxidant Therapies Using Natural and/or Pharmacological Compounds to Improve the Physiopathological Status of the Aged Male Gonad. Cells, 2021, 10, 3114.	1.8	17
282	Assessment of the Role of Follicle-Stimulating Hormone and Prolactin in the Control of Testicular Endocrine Function in Adult Djungarian Hamsters (Phodopus Sungorus) Exposed to Either Short or Long Photoperiod1. Biology of Reproduction, 1994, 50, 82-87.	1.2	16
283	Melatonin inhibits oxytocin and vasopressin release from the neurointermediate lobe of the hamster pituitary. NeuroReport, 1995, 6, 2453-2456.	0.6	16
284	Upregulation of the angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas receptor axis in the heart and the kidney of growth hormone receptor knock-out mice. Growth Hormone and IGF Research, 2012, 22, 224-233.	0.5	16
285	Downregulation of the ACE2/Ang-(1–7)/Mas axis in transgenic mice overexpressing GH. Journal of Endocrinology, 2014, 221, 215-227.	1.2	16
286	Preservation of blood glucose homeostasis in slow-senescing somatotrophism-deficient mice subjected to intermittent fasting begun at middle or old age. Age, 2014, 36, 9651.	3.0	16
287	Functionally enhanced brown adipose tissue in Ames dwarf mice. Adipocyte, 2017, 6, 62-67.	1.3	16
288	17α-Estradiol promotes ovarian aging in growth hormone receptor knockout mice, but not wild-type littermates. Experimental Gerontology, 2020, 129, 110769.	1.2	16

#	Article	IF	CITATIONS
289	Food deprivation induces conspecific pup-killing in mice. Aggressive Behavior, 1978, 4, 253-261.	1.5	15
290	A single injection of 17β-estradiol facilitates sexual behavior in castrated male mice. Hormones and Behavior, 1979, 13, 314-327.	1.0	15
291	Testicular Prolactin Receptors and Serum Growth Hormone in Golden Hamsters: Effects of Photoperiod and Time of Day 1. Biology of Reproduction, 1983, 29, 605-614.	1.2	15
292	The effect of luteinizing hormone releasing hormone on the copulatory behavior of hyperprolactinemic male rats. Hormones and Behavior, 1987, 21, 430-439.	1.0	15
293	Seasonal Changes in the Function of the Hypothalamic-Pituitary-Testicular Axis in the Syrian Hamster. Experimental Biology and Medicine, 1992, 199, 139-148.	1.1	15
294	Mild Calorie Restriction Does Not Affect Testosterone Levels and Testicular Gene Expression in Mutant Mice. Experimental Biology and Medicine, 2007, 232, 1050-1063.	1.1	15
295	Tissue-Specific GHR Knockout Mice: Metabolic Phenotypes. Frontiers in Endocrinology, 2014, 5, 243.	1.5	15
296	Primordial follicle reserve, DNA damage and macrophage infiltration in the ovaries of the long-living Ames dwarf mice. Experimental Gerontology, 2020, 132, 110851.	1.2	15
297	Influence of Photoinhibition, Photostimulation and Prolactin on Pituitary and Hypothalamic Nuclear Androgen Receptors in the Male Hamster. Neuroendocrinology, 1990, 52, 511-516.	1.2	14
298	Increased Hypothalamic Somatostatin Expression in Mice Transgenic for Bovine or Human GH. Journal of Neuroendocrinology, 1994, 6, 539-548.	1.2	14
299	Alcohol Suppresses Insulin-Like Growth Factor-1 Gene Expression in Prepubertal Transgenic Female Mice Overexpressing the Bovine Growth Hormone Gene. Alcoholism: Clinical and Experimental Research, 2002, 26, 1697-1702.	1.4	14
300	Expression of Apoptosis-Related Genes in Liver-Specific Growth Hormone Receptor Gene-Disrupted Mice Is Sex Dependent. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 44-52.	1.7	14
301	Dwarf Mice and Aging. Progress in Molecular Biology and Translational Science, 2018, 155, 69-83.	0.9	14
302	Lifespan of longâ€lived growth hormone receptor knockout mice was not normalized by housing at 30°C since weaning. Aging Cell, 2020, 19, e13123.	3.0	14
303	Thyroxine modifies the effects of growth hormone in Ames dwarf mice. Aging, 2015, 7, 241-255.	1.4	14
304	Testosterone with an Inhibitory Analog of Luteinizing Hormone-Releasing Hormone in Adult Male Rhesus Monkeys*. Journal of Clinical Endocrinology and Metabolism, 1984, 59, 601-607.	1.8	13
305	Hormonal Regulation of Testicular Prolactin Receptors and Testosterone Synthesis in Golden Hamsters1. Biology of Reproduction, 1990, 43, 162-168.	1.2	13
306	Evaluation of the co-mutagenicity of ethanol and Δ9-tetrahydrocannabinol with Trenimon. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1992, 278, 47-60.	1.2	13

#	Article	IF	CITATIONS
307	Growth Hormone (GH) Binding and Effects of GH Analogs in Transgenic Mice. Experimental Biology and Medicine, 1994, 206, 190-194.	1.1	13
308	Stimulatory Effect of Human, but not Bovine, Growth Hormone Expression on Numbers of Tuberoinfundibular Dopaminergic Neurons in Transgenic Mice*. Endocrinology, 1997, 138, 2849-2855.	1.4	13
309	The Detection of Thyrotropin-Releasing Hormone (TRH) and TRH Receptor Gene Expression in Siberian Hamster Testes. Peptides, 1997, 18, 1217-1222.	1.2	13
310	Effects of Overexpression of Growth Hormone-Releasing Hormone on the Hypothalamo-Pituitary-Gonadal Function in the Mouse. Endocrine, 1999, 11, 171-180.	2.2	13
311	C-reactive protein and glucose regulation in familial longevity. Age, 2011, 33, 623-630.	3.0	13
312	Decreased Levels of Proapoptotic Factors and Increased Key Regulators of Mitochondrial Biogenesis Constitute New Potential Beneficial Features of Long-lived Growth Hormone Receptor Gene-Disrupted Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2013, 68, 639-651.	1.7	13
313	Enhanced Cognition and Hypoglutamatergic Signaling in a Growth Hormone Receptor Knockout Mouse Model of Successful Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw088.	1.7	13
314	Male and female gonadal ageing: its impact on health span and life span. Mechanisms of Ageing and Development, 2021, 197, 111519.	2.2	13
315	Increased environmental temperature normalizes energy metabolism outputs between normal and Ames dwarf mice. Aging, 2018, 10, 2709-2722.	1.4	13
316	Links between growth hormone and aging. Endokrynologia Polska, 2013, 64, 46-52.	0.3	13
317	Identification of a Placental Lactogen in Pregnant Snell and Ames Dwarf Mice. Experimental Biology and Medicine, 1984, 175, 106-108.	1.1	12
318	Hyperprolactinemia Disrupts Neuroendocrine Responses of Male Rats to Female Conspecifics. Neuroendocrinology, 1987, 46, 499-503.	1.2	12
319	Possible Involvement of Hypothalamic Monoamines in Mediating the Action of Alpha-2u-Globulin on the Pituitary-Testicular Axis in Rats. Neuroendocrinology, 1991, 53, 7-11.	1.2	12
320	Substance P variations in the hypothalamus of golden hamsters at different stages of the estrous cycle. Neuroscience Letters, 1992, 137, 178-180.	1.0	12
321	Neurokinin A in the anterior pituitary of female rats: Effects of ovariectomy and estradiol. Peptides, 1992, 13, 1001-1005.	1.2	12
322	In vitro effects of psychoactive and non-psychoactive cannabinoids on immature rat sertoli cell function. Life Sciences, 1993, 53, 1429-1437.	2.0	12
323	In vivo and in vitro effects of neuropeptide K and neuropeptide gamma on the release of growth hormone. NeuroReport, 1995, 6, 2457-2460.	0.6	12
324	Immune Function in Transgenic Mice Overexpressing Growth Hormone (GH) Releasing Hormone, GH or GH Antagonist. Experimental Biology and Medicine, 1999, 221, 178-183.	1.1	12

#	Article	IF	CITATIONS
325	Growth hormone actions during development influence adult phenotype and longevity. Experimental Gerontology, 2016, 86, 22-27.	1.2	12
326	Altered structure and function of adipose tissue in long-lived mice with growth hormone-related mutations. Adipocyte, 2017, 6, 69-75.	1.3	12
327	Anti-aging interventions affect lifespan variability in sex, strain, diet and drug dependent fashion. Aging, 2019, 11, 4066-4074.	1.4	12
328	The effect of low and high plasma levels of insulin-like growth factor-1 (IGF-1) on the morphology of major organs: studies of Laron dwarf and bovine growth hormone transgenic (bGHTg) mice. Histology and Histopathology, 2013, 28, 1325-36.	0.5	12
329	Transient early life growth hormone exposure permanently alters brain, muscle, liver, macrophage, and adipocyte statusÂin longâ€ived Ames dwarf mice. FASEB Journal, 2022, 36, .	0.2	12
330	The response of dwarf mice to murine thyroid-stimulating hormone. General and Comparative Endocrinology, 1968, 11, 246-247.	0.8	11
331	Spermatogenesis in Mouse Strains with High and Low Abnormal Spermatozoa. Journal of Heredity, 1972, 63, 172-174.	1.0	11
332	Effects of neonatal administration of monosodium glutamate and castration on neurokinin A levels in the hypothalamus and anterior pituitary of rats. Peptides, 1992, 13, 377-381.	1.2	11
333	Galanin Gene Expression in the Hypothalamopituitary Axis of the Ames Dwarf Mouse. Molecular and Cellular Neurosciences, 1993, 4, 298-303.	1.0	11
334	INSULIN RESISTANCE AND COGNITIVE AGING IN LONG-LIVED AND SHORT-LIVED MICE. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 133-134.	1.7	11
335	Decreased thyroid follicle size in dwarf mice may suggest the role of growth hormone signaling in thyroid growth regulation. Thyroid Research, 2012, 5, 7.	0.7	11
336	The Interconnections Between Somatic and Ovarian Aging in Murine Models. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1579-1586.	1.7	11
337	Effects of a long-acting LHRH agonist preparation on plasma gonadotropin and prolactin levels in castrated male rats and on the release of prolactin from ectopic pituitaries. Regulatory Peptides, 1986, 15, 219-228.	1.9	10
338	Effect of chronic hyperprolactinemia on tuberoinfundibular dopaminergic neurons: histofluorescence in aged and in diethylstilbestrol-treated male rats. Brain Research, 1987, 411, 108-119.	1.1	10
339	Neurokinin A in the hypothalamus and anterior pituitary during the estrous cycle in the golden hamster. Neuroscience Letters, 1990, 120, 253-255.	1.0	10
340	Pituitary estrogen receptor α and dopamine subtype 2 receptor gene expression in transgenic mice with overproduction of heterologous growth hormones. Histochemistry and Cell Biology, 1999, 111, 235-241.	0.8	10
341	Effect of growth hormone receptor gene disruption and PMA treatment on the expression of genes involved in primordial follicle activation in mice ovaries. Age, 2014, 36, 9701.	3.0	10
342	GH/STAT5 signaling during the growth period in livers of mice overexpressing GH. Journal of Molecular Endocrinology, 2015, 54, 171-184.	1.1	10

#	Article	IF	CITATIONS
343	Histological changes of testes in growth hormone transgenic mice with high plasma level of GH and insulin-like growth factor-1. Folia Histochemica Et Cytobiologica, 2015, 53, 249-258.	0.6	10
344	Altered Sensitivity to an Opiate Antagonist, Naloxone, in Hyperprolactinemic Male Rats. Neuroendocrinology, 1985, 41, 1-6.	1.2	9
345	New findings in transgenic, gene knockout and mutant mice. Experimental Gerontology, 2006, 41, 1217-1219.	1.2	9
346	Ames dwarf (Prop1df/Prop1df) mice display increased sensitivity of the major GH-signaling pathways in liver and skeletal muscle. Growth Hormone and IGF Research, 2010, 20, 118-126.	0.5	9
347	Mitogenic signaling pathways in the liver of growth hormone (GH)-overexpressing mice during the growth period. Cell Cycle, 2016, 15, 748-759.	1.3	9
348	Original Research: Metabolic alterations from early life thyroxine replacement therapy in male Ames dwarf mice are transient. Experimental Biology and Medicine, 2016, 241, 1764-1771.	1.1	9
349	Circulating microRNA profile in humans and mice with congenital GH deficiency. Aging Cell, 2021, 20, e13420.	3.0	9
350	The effect of long-term diethylstilbestrol treatment or hyperprolactinemia on the response of the tuberoinfundibular dopamine neurons to elevated prolactin. Brain Research, 1985, 335, 330-333.	1.1	8
351	Effects of Bromocriptine and Ectopic Pituitary Transplants on Pituitary and Hypothalamic Nuclear Androgen Receptors in the Male Hamster. Neuroendocrinology, 1988, 47, 236-240.	1.2	8
352	Recombinant Bovine Growth Hormone Stimulates Nuclear Maturation of Bovine Oocytes In Vitro and Promotes Subsequent Embryonic Development Journal of Reproduction and Development, 1998, 44, 45-52.	0.5	8
353	Transgenic Mice Overexpressing the Growth-Hormone-Releasing Hormone Gene Have High Concentrations of Tachykinins in the Anterior Pituitary Gland. Neuroendocrinology, 1999, 70, 107-116.	1.2	8
354	Aging: All in the Head?. Cell Metabolism, 2007, 6, 153-154.	7.2	8
355	Early Life Events can Shape Aging and Longevity. Current Aging Science, 2015, 8, 11-13.	0.4	8
356	Growth hormone increases DNA damage in ovarian follicles and macrophage infiltration in the ovaries. GeroScience, 2022, 44, 1071-1081.	2.1	8
357	Decreased Survival of Embryos in Yellow (Aya) Female Mice. Journal of Heredity, 1966, 57, 14-17.	1.0	7
358	A possible mechanism of rapid luteolysis in white-footed mice,Peromyscus leucopus. Journal of Morphology, 1983, 176, 225-233.	0.6	7
359	Lactotroph hyperplasia in the pituitaries of female mice expressing high levels of bovine growth hormone. Transgenic Research, 1999, 8, 191-202.	1.3	7
360	The Effects of Aging and Genotype on NMDA Receptor Expression in Growth Hormone Receptor Knockout (GHRKO) Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 607-619.	1.7	7

#	Article	IF	CITATIONS
361	Can <scp>FSH</scp> influence longevity?. Aging Cell, 2017, 16, 916-917.	3.0	7
362	Growth Hormone and Aging: New Findings. World Journal of Men?s Health, 2021, 39, 454.	1.7	7
363	Growth hormone upregulates the pro-tumorigenic galectin 1 in mouse liver. Endocrine Connections, 2019, 8, 1108-1117.	0.8	7
364	Metformin treatment of juvenile mice alters aging-related developmental and metabolic phenotypes. Mechanisms of Ageing and Development, 2022, 201, 111597.	2.2	7
365	New Directions in Research on Aging. Stem Cell Reviews and Reports, 2022, 18, 1227-1233.	1.7	7
366	Early life events can shape aging and longevity. Current Aging Science, 2015, 8, 11-3.	0.4	7
367	Clustered Mendelian randomization analyses identify distinct and opposing pathways in the association between genetically influenced insulin-like growth factor-1 and type 2 diabetes mellitus. International Journal of Epidemiology, 2022, 51, 1874-1885.	0.9	7
368	Assessment of the effects of a synthetic gonadotropin-releasing hormone associated peptide on hormone release from the in situ and ectopic pituitaries in adult male rats. Brain Research Bulletin, 1988, 21, 95-99.	1.4	6
369	Effects of photoperiod on testicular inhibin-α and androgen binding protein mRNA expression during postnatal development in siberian hamsters,. Life Sciences, 1995, 57, 1761-1770.	2.0	6
370	Desensitization of the JAK2/STAT5 GH signaling pathway associated with increased CIS protein content in liver of pregnant mice. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E600-E607.	1.8	6
371	Deletion of growth hormone receptor gene but not visceral fat removal decreases expression of apoptosis-related genes in the kidney—potential mechanism of lifespan extension. Age, 2012, 34, 295-304.	3.0	6
372	Neuroendocrine Control of Reproduction. Advances in Experimental Medicine and Biology, 1995, 377, 15-32.	0.8	6
373	Perspective: Male Reproduction. , 0, .		6
374	Intestinal immunity in hypopituitary dwarf mice: effects of age. Aging, 2018, 10, 358-370.	1.4	6
375	Induction of somatopause in adult mice compromises bone morphology and exacerbates bone loss during aging. Aging Cell, 2021, 20, e13505.	3.0	6
376	Mutations Affecting Mammalian Aging: GH and GHR vs IGF-1 and Insulin. Frontiers in Genetics, 2021, 12, 667355.	1.1	6
377	Alcohol suppresses insulin-like growth factor-1 gene expression in prepubertal transgenic female mice overexpressing the bovine growth hormone gene. Alcoholism: Clinical and Experimental Research, 2002, 26, 1697-702.	1.4	6
378	Effects of Gonadotropins on Androgen Levels in Rete Testis Fluid of the Ram. Biology of Reproduction, 1977, 16, 274-280.	1.2	5

#	Article	IF	CITATIONS
379	A novel female influences Δ9-THC effects on plasma hormone levels in male mice. Pharmacology Biochemistry and Behavior, 1981, 15, 281-284.	1.3	5
380	Further evidence of inactivity of hypothalamo-pituitary-thyroid axis in snell dwarf mice. The Anatomical Record, 1984, 210, 617-627.	2.3	5
381	Alterations in the Control and Function of Somatic Cells in the Testis Associated with Suppression of Spermatogenesis in Seasonal Breeders. Annals of the New York Academy of Sciences, 1991, 637, 143-151.	1.8	5
382	Differential in vivo activities of bovine growth hormone analogues. Transgenic Research, 1997, 7, 61-71.	1.3	5
383	Renal pro-apoptotic proteins are reduced by growth hormone resistance but not by visceral fat removal. Biological Chemistry, 2011, 392, 475-81.	1.2	5
384	The effect of calorie restriction on the presence of apoptotic ovarian cells in normal wild type mice and low-plasma-IGF-1 Laron dwarf mice. Journal of Ovarian Research, 2013, 6, 67.	1.3	5
385	Ames hypopituitary dwarf mice demonstrate imbalanced myelopoiesis between bone marrow and spleen. Blood Cells, Molecules, and Diseases, 2015, 55, 15-20.	0.6	5
386	Attenuation of epidermal growth factor (EGF) signaling by growth hormone (GH). Journal of Endocrinology, 2017, 233, 175-186.	1.2	5
387	Exposure to growth hormone is associated with hepatic up-regulation of cPLA2α and COX. Molecular and Cellular Endocrinology, 2020, 509, 110802.	1.6	5
388	From White to Brown – Adipose Tissue Is Critical to the Extended Lifespan and Healthspan of Growth Hormone Mutant Mice. Advances in Experimental Medicine and Biology, 2019, 1178, 207-225.	0.8	5
389	Life Extension in the Dwarf Mouse. , 2006, , 403-414.		5
390	Stimulatory Effect of Human, but not Bovine, Growth Hormone Expression on Numbers of Tuberoinfundibular Dopaminergic Neurons in Transgenic Mice. , 0, .		5
391	Possible Involvement of Insulin-like Growth Factor-I in Mediating the Stimulatory Effect of Recombinant Bovine Growth Hormone on Maturation of Bovine Oocytes In Vitro Journal of Reproduction and Development, 1998, 44, 243-251.	0.5	5
392	Early Life Interventions Can Shape Aging. Frontiers in Endocrinology, 2022, 13, 797581.	1.5	5
393	Serum Estradiol, Testosterone and Dihydrotestosterone in Male Monkeys Treated with Testosterone Propionate. Endocrine Research Communications, 1978, 5, 249-257.	0.5	4
394	X-ray microanalysis of cardiocytes in the Snell dwarf mouse. Biochemical and Biophysical Research Communications, 1983, 114, 234-239.	1.0	4
395	Effects of Experimentally Induced Chronic Hyperprolactinemia on the Ultrastructure of Pinealocytes in Male Rats. Journal of Pineal Research, 1984, 1, 237-244.	3.4	4
396	The effects of short photoperiod, pinealectomy, and melatonin treatment on oxytocin synthesis and release in the male syrian hamster. Endocrine, 1996, 4, 223-231.	2.2	4

#	Article	IF	CITATIONS
397	Effects of Soy Protein and Soy Phytochemicals on Mammary Tumor Development in Female Transgenic Mice Overexpressing Human Pituitary Growth Hormone. Journal of Medicinal Food, 2005, 8, 556-559.	0.8	4
398	Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice. International Journal of Endocrinology, 2015, 2015, 1-11.	0.6	4
399	A bank vole Clethrionomys glareolus (Schreber, 1780) of extreme non-agouti phenotype. Acta Theriologica, 1967, 12, 175-177.	1.1	4
400	Differential Effects of Short Photoperiod on the Release of Progesterone and Testosterone by Hamster Testes In Vitro. Journal of Biological Rhythms, 1990, 5, 241-246.	1.4	3
401	Effect of photoperiod on the rate of3H-thymidine incorporation of epididymal principal cells in adult Syrian hamsters. The Journal of Experimental Zoology, 1991, 258, 89-94.	1.4	3
402	Thymostimulin effects on lymphoid organs in Ames dwarf mice. European Journal of Endocrinology, 1993, 128, 74-80.	1.9	3
403	Effects of Immunoneutralization of Substance P on Hypothalamic Neurotransmitters in Normal Mice and in Transgenic Mice Expressing Bovine Growth Hormone. Experimental Biology and Medicine, 1998, 218, 68-75.	1.1	3
404	Pioglitazone does not improve insulin signaling in mice with CH over-expression. Journal of Endocrinology, 2013, 219, 109-117.	1.2	3
405	Structure-Function Relationships in Somatic Cells of the Testis and Accessory Reproductive Glands. , 1994, , 55-84.		3
406	Insulin-Like Growth Factor 1 and Mammalian Aging. Science of Aging Knowledge Environment: SAGE KE, 2002, 2002, 4vp-4.	0.9	3
407	Maternal or Paternal Exposure to Cannabinoids Affects Central Neurotransmitter Levels and Reproductive Function in Male Offspring. , 1999, , 441-447.		3
408	Growth Factors in Leydig Cell Function. , 2007, , 263-277.		3
409	Somatotropic Axis, Pace of Life and Aging. Frontiers in Endocrinology, 0, 13, .	1.5	3
410	MATERNAL OR PATERNAL EXPOSURE TO CANNABINOIDS AFFECTS CENTRAL NEUROTRANSMITTER LEVELS AND REPRODUCTIVE FUNCTION IN MALE OFFSPRING. , 1984, , 411-425.		2
411	Effects of Photoperiod on Hypothalamic and Anterior Pituitary Tachykinins of Male Siberian Hamsters During Development. Peptides, 1996, 17, 1177-1181.	1.2	2
412	Comment on: Kloting et al. (2008) Autocrine IGF-1 Action in Adipocytes Controls Systemic IGF-1 Concentrations and Growth: Diabetes 57:2074-2082. Diabetes, 2009, 58, e3-e3.	0.3	2
413	Parting Messages From Current and Former Editors of the <i>Journal of Andrology</i> . Journal of Andrology, 2012, 33, 1068-1074.	2.0	2
414	Interaction of growth hormone receptor/binding protein gene disruption and caloric restriction for insulin sensitivity and attenuated aging. F1000Research, 2014, 3, 256.	0.8	2

#	Article	IF	CITATIONS
415	Differential Fasting Plasma Glucose and Ketone Body Levels in GHRKO versus 3xTg-AD Mice: A Potential Contributor to Aging-Related Cognitive Status?. International Journal of Endocrinology, 2017, 2017, 1-7.	0.6	2
416	Benefits of Living Without Growth Hormone. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1769-1774.	1.7	2
417	Diabetes and Aging. , 2016, , 355-376.		2
418	The effects of early-life growth hormone intervention on tissue specific histone H3 modifications in long-lived Ames dwarf mice. Aging, 2021, 13, 1633-1648.	1.4	2
419	Hypothalamic Deafferentation Inhibits the Stimulatory Influence of Prolactin on Follicle-Stimulating Hormone Release in the Golden Hamster*. Endocrinology, 1984, 114, 87-91.	1.4	1
420	Evidence that growth hormone exerts a negatives feedback action on stomach ghrelin homeostasis. Gastroenterology, 2003, 124, A471.	0.6	1
421	Interaction of growth hormone and calorie restriction. Expert Review of Endocrinology and Metabolism, 2006, 1, 775-781.	1.2	1
422	Effects of Every-Other-Day Feeding on Prolactin Regulatory Mechanism in Transgenic Human Growth Hormone Mice. Experimental Biology and Medicine, 2008, 233, 434-438.	1.1	1
423	A summary of the Proceedings of the Ninth International Symposium on the Neurobiology and Neuroendocrinology of Aging Bregenz, Austria, July 20–25, 2008. Experimental Gerontology, 2009, 44, 1-3.	1.2	1
424	Special Issue on the Endocrinology of Aging. Molecular and Cellular Endocrinology, 2009, 299, 1.	1.6	1
425	Declining Sperm Counts and Increases in Testicular Cancer: A Legacy of the Cold War?. Journal of Andrology, 2009, 30, 213-213.	2.0	1
426	Miller time. Aging Cell, 2011, 10, 1-1.	3.0	1
427	Do altered energy metabolism or spontaneous locomotion â€~mediate' decelerated senescence?. Aging Cell, 2015, 14, 483-490.	3.0	1
428	EFFECT OF CALORIC RESTRICTION AND RAPAMYCIN ON OVARIAN AGING IN MICE. Innovation in Aging, 2019, 3, S103-S103.	0.0	1
429	Unexpected Evidence That Chronic IGF-1 Deficiency In Laron Dwarf Mice Maintains High Levels of Hematopoietic Stem Cells (HSCs) In BM - Are HSCs Gradually Depleted From BM with Age In An IGF-1–dependent Manner? Implications for the Novel Effect of Caloric Restriction on the Hematopoietic Stem Cell Compartment and Longevity., Blood, 2010, 116, 1551-1551.	0.6	1
430	Growth Hormone Signaling Shapes the Impact of Environmental Temperature on Transcriptomic Profile of Different Adipose Tissue Depots in Male Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 941-946.	1.7	1
431	Neuroendocrine and Reproductive Functions in Transgenic Mice with Altered Growth Hormone Secretion and in Growth Hormone Receptor Gene Disrupted Mice. Growth Hormone, 2001, , 105-121.	0.2	1
432	Metallothionein levels and multimeric forms in delayed and premature aging mouse models. FASEB Journal, 2006, 20, A1086.	0.2	1

#	Article	IF	CITATIONS
433	Genetics and Luteinizing Hormone Receptors. , 1994, , 293-318.		1
434	Response of pituitary thyrotrophs to thyrotrophin-releasing hormone in Snell dwarf mice. Cell and Tissue Research, 1987, 248, 683-687.	1.5	0
435	Introduction. Age, 2006, 28, 123-124.	3.0	Ο
436	Food Restriction, Hormones, Genes and Aging. , 2010, , 217-232.		0
437	Body size, GH signaling and longevity. Experimental Gerontology, 2013, 48, 697-698.	1.2	0
438	Life Extension in Dwarf Mice. , 2018, , 231-244.		0
439	Early Life Programming of Aging in Genetically Long-Lived Mice. Healthy Ageing and Longevity, 2019, , 37-55.	0.2	Ο
440	KENT AND KLEEMEIER AWARD LECTURES. Innovation in Aging, 2019, 3, S600-S600.	0.0	0
441	Thermogenesis and aging. , 2021, , 173-181.		Ο
442	Morphological and molecular effects of overexpressed GH on mice mammary gland. Molecular and Cellular Endocrinology, 2021, 538, 111465.	1.6	0
443	Introduction to Editorials on Crises in Academic Medicine: Diagnoses and Treatments. Proceedings of the Society for Experimental Biology and Medicine, 2000, 223, 227-227.	2.0	0
444	Overexpression and Targeted Disruption of Genes Involved in the Control of Growth, Food Intake, and Obesity. , 2001, , 339-370.		0
445	Alcohol Suppresses Insulin-Like Growth Factor-1 Gene Expression in Prepubertal Transgenic Female Mice Overexpressing the Bovine Growth Hormone Gene. Alcoholism: Clinical and Experimental Research, 2002, 26, 1697-1702.	1.4	0
446	Sertoli Cell Biology in Seasonal Breeders. , 2005, , 81-92.		0
447	Effects of Caloric Restriction and Growth Hormone Treatment on Insulinâ€Related Intermediates in The Skeletal Muscle. FASEB Journal, 2008, 22, 116-116.	0.2	Ο
448	Introduction to Editorials on Crises in Academic Medicine: Diagnoses and $\widehat{e}f$ Treatments. Proceedings of the Society for Experimental Biology and Medicine, 0, 223, 227-227.	2.0	0
449	Hormonal Influences on Aging and Lifespan. , 2010, , 43-68.		0
450	The Number of Very Small Embryonic Like Stem Cells (VSELs) Decreases During Aging In An IGF-1-Dependent Manner - a Novel Link Between Aging, Caloric Restriction, and the Size of the Stem Cell Pool. Blood, 2010, 116, 4796-4796.	0.6	0

#	Article	IF	CITATIONS
451	Growth Hormone and Mammalian Aging. , 2019, , 171-171.		0
452	Early Life Events can Shape Aging and Longevity. Current Aging Science, 2015, , .	0.4	0
453	Overexpression and Targeted Disruption of Genes Involved in the Control of Growth, Food Intake, and Obesity. , 0, , 339-370.		0
454	Elucidating the temperature exposome in Alzheimer's disease Alzheimer's and Dementia, 2021, 17 Suppl 3, e055523.	0.4	0
455	Cellular senescence, inflammation, and cognition in aging and Alzheimer's disease: What's the connection?. Alzheimer's and Dementia, 2021, 17 Suppl 3, e055688.	0.4	0
456	Insulin signaling in the heart is directly and early impaired by growth hormone. Journal of Molecular Endocrinology, 2022, , .	1.1	0