Thais S S Milessi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parametric comparison of biodiesel transesterification processes using <scp>nonâ€edible</scp> feedstocks: Castor bean and jatropha oils. Biofuels, Bioproducts and Biorefining, 2023, 17, 297-311.	3.7	4
2	<scp>Assessment of</scp> the <scp>sustainability and economic potential of hydrotreated vegetable oils</scp> to <scp>complement diesel and biodiesel blends in Brazil</scp> . Biofuels, Bioproducts and Biorefining, 2023, 17, 312-323.	3.7	5
3	Biodiesel production in oil biorefinery and by-products utilization. , 2022, , 109-150.		1
4	Towards a practical industrial 2G ethanol production process based on immobilized recombinant S.Âcerevisiae: Medium and strain selection for robust integrated fixed-bed reactor operation. Renewable Energy, 2022, 185, 363-375.	8.9	12
5	Enzymatic catalysis as a tool in biofuels production in Brazil: Current status and perspectives. Energy for Sustainable Development, 2022, 68, 103-119.	4.5	32
6	Cell Immobilization Using Alginate-Based Beads as a Protective Technique against Stressful Conditions of Hydrolysates for 2G Ethanol Production. Polymers, 2022, 14, 2400.	4.5	9
7	Improvement of functional properties of cow's milk peptides through partial proteins hydrolysis. Journal of Food Science and Technology, 2022, 59, 4520-4529.	2.8	1
8	Sugarcane straw as a potential second generation feedstock for biorefinery and white biotechnology applications. Biomass and Bioenergy, 2021, 144, 105896.	5.7	54
9	High stabilization and hyperactivation of a Recombinant β-Xylosidase through Immobilization Strategies. Enzyme and Microbial Technology, 2021, 145, 109725.	3.2	9
10	Brazilian biorefineries from second generation biomass: critical insights from industry and future perspectives. Biofuels, Bioproducts and Biorefining, 2021, 15, 1190-1208.	3.7	40
11	Unraveling continuous 2G ethanol production from xylose using hemicellulose hydrolysate and immobilized superior recombinant yeast in fixed-bed bioreactor. Biochemical Engineering Journal, 2021, 169, 107963.	3.6	15
12	Xylooligosaccharides production chain in sugarcane biorefineries: From the selection of pretreatment conditions to the evaluation of nutritional properties. Industrial Crops and Products, 2021, 172, 114056.	5.2	18
13	Repeated batches as a strategy for high 2G ethanol production from undetoxified hemicellulose hydrolysate using immobilized cells of recombinant Saccharomyces cerevisiae in a fixed-bed reactor. Biotechnology for Biofuels, 2020, 13, 85.	6.2	21
14	Continuous 2G ethanol production from xylose in a fixed-bed reactor by native Saccharomyces cerevisiae strain through simultaneous isomerization and fermentation. Cellulose, 2020, 27, 4429-4442.	4.9	15
15	Bioethanol Production from Xylose-Rich Hydrolysate by Immobilized Recombinant <i>Saccharomyces cerevisiae</i> in Fixed-Bed Reactor. Industrial Biotechnology, 2020, 16, 75-80.	0.8	7
16	An Innovative Biocatalyst for Continuous 2G Ethanol Production from Xylo-Oligomers by Saccharomyces cerevisiae through Simultaneous Hydrolysis, Isomerization, and Fermentation (SHIF). Catalysts, 2019, 9, 225.	3.5	12
17	Influence of key variables on the simultaneous isomerization and fermentation (SIF) of xylose by a native Saccharomyces cerevisiae strain co-encapsulated with xylose isomerase for 2G ethanol production. Biomass and Bioenergy, 2018, 119, 277-283.	5.7	19
18	Eucalyptus xylan: An in-house-produced substrate for xylanase evaluation to substitute birchwood xylan. Carbohydrate Polymers, 2018, 197, 167-173.	10.2	13

#	Article	IF	CITATIONS
19	Hemicellulosic Ethanol Production in Fluidized Bed Reactor from Sugar Cane Bagasse Hydrolysate: Interplay among Carrier Concentration and Aeration Rate. ACS Sustainable Chemistry and Engineering, 2017, 5, 8250-8259.	6.7	13
20	Hemicellulosic Ethanol Production by Immobilized Wild Brazilian Yeast Scheffersomyces shehatae UFMG-HM 52.2: Effects of Cell Concentration and Stirring Rate. Current Microbiology, 2016, 72, 133-138.	2.2	18
21	Immobilization and stabilization of an endoxylanase from Bacillus subtilis (XynA) for xylooligosaccharides (XOs) production. Catalysis Today, 2016, 259, 130-139.	4.4	48
22	Hemicellulosic ethanol production by immobilized cells of <i>Scheffersomyces stipitis</i> : Effect of cell concentration and stirring. Bioengineered, 2015, 6, 26-32.	3.2	12
23	Bioethanol Production from Sugarcane Bagasse by a Novel Brazilian Pentose Fermenting Yeast <i>Scheffersomyces shehatae</i> UFMG-HM 52.2: Evaluation of Fermentation Medium. International Journal of Chemical Engineering, 2014, 2014, 1-8.	2.4	49
24	Rice bran extract: an inexpensive nitrogen source for the production of 2G ethanol from sugarcane bagasse hydrolysate. 3 Biotech, 2013, 3, 373-379.	2.2	16
25	Immobilization of Scheffersomyces stipitis cells with calcium alginate beads: A sustainable method for hemicellulosic ethanol production from sugarcane bagasse hydrolysate. Bioethanol, 2013, 1, .	1.2	5
26	Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-15.	3.0	372
27	Dilute Acid Hydrolysis of Agro-Residues for the Depolymerization of Hemicellulose: State-of-the-Art. , 2012, , 39-61.		29