
Cheng-Lin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3625862/publications.pdf Version: 2024-02-01

CHENC-LIN LL

#	Article	IF	CITATIONS
1	Microstructure and mechanical properties of a new high-strength and high-toughness titanium alloy. Rare Metals, 2023, 42, 281-287.	7.1	7
2	Tailoring bimodal structure for high strength and ductility in pure titanium manufactured via laser powder bed fusion. Journal of Alloys and Compounds, 2022, 901, 163590.	5.5	9
3	Research progress on hot deformation behavior of high-strength β titanium alloy: flow behavior and constitutive model. Rare Metals, 2022, 41, 1434-1455.	7.1	15
4	Multistep low-to-high-temperature heating as a suitable alternative to hot isostatic pressing for improving laser powder-bed fusion-fabricated Ti-6Al-2Zr-1Mo-1V microstructural and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 841, 143022.	5.6	6
5	Realizing superior ductility of selective laser melted Ti-6Al-4V through a multi-step heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140367.	5.6	39
6	Bimodal grain structures and tensile properties of a biomedical Co–20Cr–15W–10Ni alloy with different pre-strains. Rare Metals, 2021, 40, 20-30.	7.1	12
7	Thermal stability of bimodal grain structure in a cobalt-based superalloy subjected to high-temperature exposure. Rare Metals, 2021, 40, 877-884.	7.1	3
8	GNPs/Al nanocomposites with high strength and ductility and electrical conductivity fabricated by accumulative roll-compositing. Rare Metals, 2021, 40, 2593-2601.	7.1	7
9	Formation of equiaxed grains in selective laser melted pure titanium during annealing. Journal of Materials Research and Technology, 2021, 11, 301-311.	5.8	20
10	Effects of post heat treatment on the microstructure evolution of Inconel 718 manufactured by selective laser melting. Materials Research Express, 2021, 8, 095801.	1.6	2
11	Study on microstructure and mechanical property of a biomedical Co-20Cr-15W-10Ni alloy during multi-pass thermomechanical processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139388.	5.6	7
12	A study on microstructural evolution and detwinning behavior of Ti–3Al–2.5V cold-rolled tube during annealing. Materials Research Express, 2020, 7, 096520.	1.6	9
13	Deformation heterogeneity and its effect on recrystallization behavior in commercially pure titanium: Comparative study on initial microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138211.	5.6	19
14	Simultaneous achievement of equiaxed grain structure and weak texture in pure titanium via selective laser melting and subsequent heat treatment. Journal of Alloys and Compounds, 2019, 803, 407-412.	5.5	33
15	Microstructural response of β-stabilized Ti–6Al–4V manufactured by direct energy deposition. Journal of Alloys and Compounds, 2019, 811, 152021.	5.5	47
16	Characterization of Hot Deformation Behavior and Processing Maps of Ti–19Al–22Mo Alloy. Metals and Materials International, 2019, 25, 1063-1071.	3.4	23
17	High strength and ductility of electron beam melted β stabilized γ-TiAl alloy at 800°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 756, 41-45.	5.6	30
18	Bimodal grain-structure formation in a Co–Cr-based superalloy during ultrahigh-homologous-temperature annealing without severe plastic deformation. Journal of Alloys and Compounds, 2019, 783, 173-178.	5.5	19

Cheng-Lin Li

#	Article	IF	CITATIONS
19	Modeling hot deformation behavior of low-cost Ti-2Al-9.2Mo-2Fe beta titanium alloy using a deep neural network. Journal of Materials Science and Technology, 2019, 35, 907-916.	10.7	46
20	Upregulation of phosphatase and tensin homolog is essential for the effect of 4-aminopyridine on A549/CDDP cells. Molecular Medicine Reports, 2018, 17, 5996-6001.	2.4	5
21	Alignmentâ€Free Liquidâ€Capsule Pressure Sensor for Cardiovascular Monitoring. Advanced Functional Materials, 2018, 28, 1805045.	14.9	52
22	High strength and high ductility in the Co–20Cr–15W–10Ni alloy having a bimodal grain structure achieved by static recrystallization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 732, 70-77.	5.6	21
23	Quantitative analysis of {332}ã€^113〉 twinning in a Ti-15Mo alloy by <i>in situ</i> scanning electron microscopy. Science and Technology of Advanced Materials, 2018, 19, 474-483.	6.1	7
24	{332}<113> detwinning in a multilayered bcc-Ti–10Mo–Fe alloy. Journal of Materials Science, 2017, 52, 7858-7867.	3.7	9
25	Preparation and characterization of small-diameter decellularized scaffolds for vascular tissue engineering in an animal model. BioMedical Engineering OnLine, 2017, 16, 55.	2.7	33
26	Nile Red Loaded PLGA Nanoparticles Surface Modified with Gd-DTPA for Potential Dual-Modal Imaging. Journal of Nanoscience and Nanotechnology, 2016, 16, 5569-5576.	0.9	12
27	MicroRNAs Involved in Asthma After Mesenchymal Stem Cells Treatment. Stem Cells and Development, 2016, 25, 883-896.	2.1	20
28	Study of {332}<113> twinning in a multilayered Ti-10Mo-xFe (x = 1–3) alloy by ECCI and EBSD. Science and Technology of Advanced Materials, 2016, 17, 220-228.	6.1	25
29	Effect of Al Addition on ω Precipitation and Age Hardening of Ti-Al-Mo-Fe Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2454-2461.	2.2	9
30	Involvement of RECK in gambogic acid induced antiâ€invasive effect in A549 human lung carcinoma cells. Molecular Carcinogenesis, 2015, 54, E13-25.	2.7	37
31	Arsenic Trioxide Induces T Cell Apoptosis and Prolongs Islet Allograft Survival in Mice. Transplantation, 2015, 99, 1796-1806.	1.0	13
32	Microstructural evolution and age hardening behavior of a new metastable beta Ti–2Al–9.2Mo–2Fe alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 225-231.	5.6	18
33	A sensitive colorimetric strategy for monitoring cerebral β-amyloid peptides in AD based on dual-functionalized gold nanoplasmonic particles. Chemical Communications, 2015, 51, 8880-8883.	4.1	22
34	Effect of Trace Boron Addition on Microstructure and Properties of as-Cast Ti-6Al-4V Alloy. Rare Metal Materials and Engineering, 2014, 43, 2908-2911.	0.8	10
35	Effect of temperature on grain growth kinetics of high strength Ti–2Al–9.2Mo–2Fe alloy. Thermochimica Acta, 2014, 586, 66-71.	2.7	21
36	Effect of heat treatments on microstructure and property of a high strength/toughness Ti–8V–1.5Mo–2Fe–3Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 616, 207-213.	5.6	27

CHENG-LIN LI

#	Article	IF	CITATIONS
37	Phase transformation and age hardening behavior of new Ti–9.2Mo–2Fe alloy. Journal of Alloys and Compounds, 2013, 549, 152-157.	5.5	26
38	A study on the microstructures and tensile properties of new beta high strength titanium alloy. Journal of Alloys and Compounds, 2013, 550, 23-30.	5.5	79
39	Effect of solution temperature on microstructures and tensile properties of high strength Ti–6Cr–5Mo–5V–4Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 103-109.	5.6	51
40	Influence of heat treatment on microstructure and tensile property of a new high strength beta alloy Ti–2Al–9.2Mo–2Fe. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 580, 250-256.	5.6	17
41	Dynamic stress–strain properties of Ti–Al–V titanium alloys with various element contents. Rare Metals, 2013, 32, 555-559.	7.1	15
42	Development of Low Cost and Low Elastic Modulus of Ti-Al-Mo-Fe Alloys for Automotive Applications. Key Engineering Materials, 2013, 551, 114-117.	0.4	12
43	Higher Blood 25(OH)D Level May Reduce the Breast Cancer Risk: Evidence from a Chinese Population Based Case-Control Study and Meta-Analysis of the Observational Studies. PLoS ONE, 2013, 8, e49312.	2.5	53
44	Mechanical Characterization of Ti-Mo-Fe Titanium Alloy. Advanced Materials Research, 2012, 567, 37-40.	0.3	5
45	Microstructure Evolution of Ti-9.2Mo-2Fe Alloy. Advanced Materials Research, 2012, 567, 30-32.	0.3	1
46	Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells. Biochemistry and Cell Biology, 2012, 90, 718-730.	2.0	56
47	Gambogic Acid Deactivates Cytosolic and Mitochondrial Thioredoxins by Covalent Binding to the Functional Domain. Journal of Natural Products, 2012, 75, 1108-1116.	3.0	32
48	VI-14, a novel flavonoid derivative, inhibits migration and invasion of human breast cancer cells. Toxicology and Applied Pharmacology, 2012, 261, 217-226.	2.8	24
49	Gambogic acid inhibits tumor cell adhesion by suppressing integrin β1 and membrane lipid rafts-associated integrin signaling pathway. Biochemical Pharmacology, 2011, 82, 1873-1883.	4.4	57
50	Anti-invasive effect of gambogic acid in MDA-MB-231 human breast carcinoma cells. Biochemistry and Cell Biology, 2008, 86, 386-395.	2.0	50
51	Aging Behaviors of Ti-Al-Mo-Fe Titanium Alloy. Advanced Materials Research, 0, 567, 102-104.	0.3	1
52	Effect of Heat Treatment on Grain Growth of Beta Titanium Alloy. Advanced Materials Research, 0, 1025-1026, 423-426.	0.3	5
53	Dynamic Compression Behavior of Ti-6Al-4V Plates Prepared by a Single Electron Beam Cold Hearth Melted Ingot. Advanced Materials Research, 0, 1015, 328-331.	0.3	4