Johannes Jäger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3625300/publications.pdf

Version: 2024-02-01

58 3,441 31 54 papers citations h-index g-index

74 74 74 1961 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The origin of RNA interference: Adaptive or neutral evolution?. PLoS Biology, 2022, 20, e3001715.	2.6	14
2	Dynamical Modularity of the Genotype-Phenotype Map., 2021,, 245-280.		0
3	Life's Attractors Continued: Progress in Understanding Developmental Systems Through Reverse Engineering and In Silico Evolution. , 2021, , 59-88.		O
4	Homology of process: developmental dynamics in comparative biology. Interface Focus, 2021, 11, 20210007.	1.5	18
5	Dynamical modules in metabolism, cell and developmental biology. Interface Focus, 2021, 11, 20210011.	1.5	11
6	Drawing to Extend Waddington's Epigenetic Landscape. Leonardo, 2020, 53, 256-262.	0.2	1
7	Dynamic positional information: Patterning mechanism versus precision in gradient-driven systems. Current Topics in Developmental Biology, 2020, 137, 219-246.	1.0	11
8	Genetic Causation in Complex Regulatory Systems: AnÂIntegrative Dynamic Perspective. BioEssays, 2020, 42, e1900226.	1.2	37
9	Beyond networks: mechanism and process in evo-devo. Biology and Philosophy, 2019, 34, 1.	0.7	28
10	Modularity, criticality, and evolvability of a developmental gene regulatory network. ELife, 2019, 8, .	2.8	67
11	<i>tarsal-less</i> is expressed as a gap gene but has no gap gene phenotype in the moth midge <i>Clogmia albipunctata</i> . Royal Society Open Science, 2018, 5, 180458.	1.1	4
12	Two consecutive microtubule-based epithelial seaming events mediate dorsal closure in the scuttle fly Megaselia abdita. ELife, $2018, 7, \ldots$	2.8	1
13	Shift happens: The developmental and evolutionary dynamics of the gap gene system. Current Opinion in Systems Biology, 2018, 11, 65-73.	1.3	17
14	A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila. PLoS Biology, 2018, 16, e2003174.	2.6	65
15	Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression. PLoS Computational Biology, 2017, 13, e1005285.	1.5	50
16	Non-canonical dorsoventral patterning in the moth midge Clogmia albipunctata. EvoDevo, 2017, 8, 20.	1.3	7
17	A quantitative validated model reveals two phases of transcriptional regulation for the gap gene giant in Drosophila. Developmental Biology, 2016, 411, 325-338.	0.9	15
18	Gap Gene Regulatory Dynamics Evolve along a Genotype Network. Molecular Biology and Evolution, 2016, 33, 1293-1307.	3.5	55

#	Article	IF	Citations
19	Everything flows. EMBO Reports, 2015, 16, 1064-1067.	2.0	31
20	High-resolution gene expression data from blastoderm embryos of the scuttle fly Megaselia abdita. Scientific Data, 2015, 2, 150005.	2.4	5
21	SuperFly: a comparative database for quantified spatio-temporal gene expression patterns in early dipteran embryos. Nucleic Acids Research, 2015, 43, D751-D755.	6.5	16
22	Maternal Co-ordinate Gene Regulation and Axis Polarity in the Scuttle Fly Megaselia abdita. PLoS Genetics, 2015, 11, e1005042.	1.5	14
23	The Comet Cometh: Evolving Developmental Systems. Biological Theory, 2015, 10, 36-49.	0.8	16
24	BioPreDyn-bench: a suite of benchmark problems for dynamic modelling in systems biology. BMC Systems Biology, 2015, 9, 8.	3.0	61
25	Explanatory Integration Challenges in Evolutionary Systems Biology. Biological Theory, 2015, 10, 18-35.	0.8	33
26	Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita. ELife, 2015, 4, .	2.8	68
27	A Staging Scheme for the Development of the Scuttle Fly Megaselia abdita. PLoS ONE, 2014, 9, e84421.	1.1	26
28	A Staging Scheme for the Development of the Moth Midge Clogmia albipunctata. PLoS ONE, 2014, 9, e84422.	1.1	28
29	A quantitative atlas of Even-skipped and Hunchback expression in Clogmia albipunctata (Diptera:) Tj ETQq $1\ 1\ 0$.	784314 rg	gBT_/Overlock
30	Classification of transient behaviours in a time-dependent toggle switch model. BMC Systems Biology, 2014, 8, 43.	3.0	67
31	Bioattractors: dynamical systems theory and the evolution of regulatory processes. Journal of Physiology, 2014, 592, 2267-2281.	1.3	92
32	Evolution of early development in dipterans: Reverse-engineering the gap gene network in the moth midge Clogmia albipunctata (Psychodidae). BioSystems, 2014, 123, 74-85.	0.9	35
33	On the concept of mechanism in development. , 2014, , 56-78.		26
34	Comparative transcriptomics of early dipteran development. BMC Genomics, 2013, 14, 123.	1.2	41
35	Lack of tailless leads to an increase in expression variability in Drosophila embryos. Developmental Biology, 2013, 377, 305-317.	0.9	28
36	Reverse-Engineering Post-Transcriptional Regulation of Gap Genes in Drosophila melanogaster. PLoS Computational Biology, 2013, 9, e1003281.	1.5	38

#	Article	IF	CITATIONS
37	Efficient Reverse-Engineering of a Developmental Gene Regulatory Network. PLoS Computational Biology, 2012, 8, e1002589.	1.5	82
38	The Inheritance of Process: A Dynamical Systems Approach. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 591-612.	0.6	56
39	Drosophila blastoderm patterning. Current Opinion in Genetics and Development, 2012, 22, 533-541.	1.5	76
40	Medium-Throughput Processing of Whole Mount In Situ Hybridisation Experiments into Gene Expression Domains. PLoS ONE, 2012, 7, e46658.	1.1	29
41	Life's Attractors. Advances in Experimental Medicine and Biology, 2012, 751, 93-119.	0.8	35
42	The gap gene network. Cellular and Molecular Life Sciences, 2011, 68, 243-274.	2.4	269
43	Reverse engineering a gene network using an asynchronous parallel evolution strategy. BMC Systems Biology, 2010, 4, 17.	3.0	35
44	A systematic analysis of the gap gene system in the moth midge Clogmia albipunctata. Developmental Biology, 2010, 344, 306-318.	0.9	64
45	Getting the Measure of Positional Information. PLoS Biology, 2009, 7, e1000081.	2.6	25
46	Gene Circuit Analysis of the Terminal Gap Gene huckebein. PLoS Computational Biology, 2009, 5, e1000548.	1.5	65
47	Modelling the Drosophila embryo. Molecular BioSystems, 2009, 5, 1549.	2.9	50
48	Parameter estimation and determinability analysis applied to Drosophila gap gene circuits. BMC Systems Biology, 2008, 2, 83.	3.0	77
49	Regulative feedback in pattern formation: towards a general relativistic theory of positional information. Development (Cambridge), 2008, 135, 3175-3183.	1.2	89
50	Known maternal gradients are not sufficient for the establishment of gap domains in Drosophila melanogaster. Mechanisms of Development, 2007, 124, 108-128.	1.7	73
51	Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nature Genetics, 2006, 38, 1159-1165.	9.4	196
52	On the dynamic nature of positional information. BioEssays, 2006, 28, 1102-1111.	1.2	87
53	Reverse Engineering the Gap Gene Network of Drosophila melanogaster. PLoS Computational Biology, 2006, 2, e51.	1.5	161
54	A high-throughput method for quantifying gene expression data from early Drosophila embryos. Development Genes and Evolution, 2005, 215, 374-381.	0.4	62

#	Article	IF	CITATIONS
55	Dynamical Analysis of Regulatory Interactions in the Gap Gene System of Drosophila melanogaster. Genetics, 2004, 167, 1721-1737.	1.2	229
56	Dynamic control of positional information in the early Drosophila embryo. Nature, 2004, 430, 368-371.	13.7	540
57	Pattern formation and nuclear divisions are uncoupled in Drosophila segmentation: comparison of spatially discrete and continuous models. Physica D: Nonlinear Phenomena, 2004, 197, 286-302.	1.3	35
58	The flow of substance: a reply to Horsting & Dartjes. EMBO Reports, 0, , .	2.0	1