Johannes Jäger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3625300/publications.pdf Version: 2024-02-01

Ιομαννές ΙΔαέρ

#	Article	IF	CITATIONS
1	Dynamic control of positional information in the early Drosophila embryo. Nature, 2004, 430, 368-371.	13.7	540
2	The gap gene network. Cellular and Molecular Life Sciences, 2011, 68, 243-274.	2.4	269
3	Dynamical Analysis of Regulatory Interactions in the Gap Gene System of Drosophila melanogaster. Genetics, 2004, 167, 1721-1737.	1.2	229
4	Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nature Genetics, 2006, 38, 1159-1165.	9.4	196
5	Reverse Engineering the Gap Gene Network of Drosophila melanogaster. PLoS Computational Biology, 2006, 2, e51.	1.5	161
6	Bioattractors: dynamical systems theory and the evolution of regulatory processes. Journal of Physiology, 2014, 592, 2267-2281.	1.3	92
7	Regulative feedback in pattern formation: towards a general relativistic theory of positional information. Development (Cambridge), 2008, 135, 3175-3183.	1.2	89
8	On the dynamic nature of positional information. BioEssays, 2006, 28, 1102-1111.	1.2	87
9	Efficient Reverse-Engineering of a Developmental Gene Regulatory Network. PLoS Computational Biology, 2012, 8, e1002589.	1.5	82
10	Parameter estimation and determinability analysis applied to Drosophila gap gene circuits. BMC Systems Biology, 2008, 2, 83.	3.0	77
11	Drosophila blastoderm patterning. Current Opinion in Genetics and Development, 2012, 22, 533-541.	1.5	76
12	Known maternal gradients are not sufficient for the establishment of gap domains in Drosophila melanogaster. Mechanisms of Development, 2007, 124, 108-128.	1.7	73
13	Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita. ELife, 2015, 4, .	2.8	68
14	Classification of transient behaviours in a time-dependent toggle switch model. BMC Systems Biology, 2014, 8, 43.	3.0	67
15	Modularity, criticality, and evolvability of a developmental gene regulatory network. ELife, 2019, 8, .	2.8	67
16	Gene Circuit Analysis of the Terminal Gap Gene huckebein. PLoS Computational Biology, 2009, 5, e1000548.	1.5	65
17	A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila. PLoS Biology, 2018, 16, e2003174.	2.6	65
18	A systematic analysis of the gap gene system in the moth midge Clogmia albipunctata. Developmental Biology, 2010, 344, 306-318.	0.9	64

Johannes JÃ**g**er

#	Article	IF	CITATIONS
19	A high-throughput method for quantifying gene expression data from early Drosophila embryos. Development Genes and Evolution, 2005, 215, 374-381.	0.4	62
20	BioPreDyn-bench: a suite of benchmark problems for dynamic modelling in systems biology. BMC Systems Biology, 2015, 9, 8.	3.0	61
21	A quantitative atlas of Even-skipped and Hunchback expression in Clogmia albipunctata (Diptera:) Tj ETQq1 1 0.7	784314 rg 1.3	BT /Overlock 57
22	The Inheritance of Process: A Dynamical Systems Approach. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 591-612.	0.6	56
23	Gap Gene Regulatory Dynamics Evolve along a Genotype Network. Molecular Biology and Evolution, 2016, 33, 1293-1307.	3.5	55
24	Modelling the Drosophila embryo. Molecular BioSystems, 2009, 5, 1549.	2.9	50
25	Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression. PLoS Computational Biology, 2017, 13, e1005285.	1.5	50
26	Comparative transcriptomics of early dipteran development. BMC Genomics, 2013, 14, 123.	1.2	41
27	Reverse-Engineering Post-Transcriptional Regulation of Gap Genes in Drosophila melanogaster. PLoS Computational Biology, 2013, 9, e1003281.	1.5	38
28	Genetic Causation in Complex Regulatory Systems: AnÂIntegrative Dynamic Perspective. BioEssays, 2020, 42, e1900226.	1.2	37
29	Pattern formation and nuclear divisions are uncoupled in Drosophila segmentation: comparison of spatially discrete and continuous models. Physica D: Nonlinear Phenomena, 2004, 197, 286-302.	1.3	35
30	Reverse engineering a gene network using an asynchronous parallel evolution strategy. BMC Systems Biology, 2010, 4, 17.	3.0	35
31	Evolution of early development in dipterans: Reverse-engineering the gap gene network in the moth midge Clogmia albipunctata (Psychodidae). BioSystems, 2014, 123, 74-85.	0.9	35
32	Life's Attractors. Advances in Experimental Medicine and Biology, 2012, 751, 93-119.	0.8	35
33	Explanatory Integration Challenges in Evolutionary Systems Biology. Biological Theory, 2015, 10, 18-35.	0.8	33
34	Everything flows. EMBO Reports, 2015, 16, 1064-1067.	2.0	31
35	Medium-Throughput Processing of Whole Mount In Situ Hybridisation Experiments into Gene Expression Domains. PLoS ONE, 2012, 7, e46658.	1.1	29
36	Lack of tailless leads to an increase in expression variability in Drosophila embryos. Developmental Biology, 2013, 377, 305-317.	0.9	28

Johannes JÃ**g**er

#	Article	IF	CITATIONS
37	A Staging Scheme for the Development of the Moth Midge Clogmia albipunctata. PLoS ONE, 2014, 9, e84422.	1.1	28
38	Beyond networks: mechanism and process in evo-devo. Biology and Philosophy, 2019, 34, 1.	0.7	28
39	A Staging Scheme for the Development of the Scuttle Fly Megaselia abdita. PLoS ONE, 2014, 9, e84421.	1.1	26
40	On the concept of mechanism in development. , 2014, , 56-78.		26
41	Getting the Measure of Positional Information. PLoS Biology, 2009, 7, e1000081.	2.6	25
42	Homology of process: developmental dynamics in comparative biology. Interface Focus, 2021, 11, 20210007.	1.5	18
43	Shift happens: The developmental and evolutionary dynamics of the gap gene system. Current Opinion in Systems Biology, 2018, 11, 65-73.	1.3	17
44	SuperFly: a comparative database for quantified spatio-temporal gene expression patterns in early dipteran embryos. Nucleic Acids Research, 2015, 43, D751-D755.	6.5	16
45	The Comet Cometh: Evolving Developmental Systems. Biological Theory, 2015, 10, 36-49.	0.8	16
46	A quantitative validated model reveals two phases of transcriptional regulation for the gap gene giant in Drosophila. Developmental Biology, 2016, 411, 325-338.	0.9	15
47	Maternal Co-ordinate Gene Regulation and Axis Polarity in the Scuttle Fly Megaselia abdita. PLoS Genetics, 2015, 11, e1005042.	1.5	14
48	The origin of RNA interference: Adaptive or neutral evolution?. PLoS Biology, 2022, 20, e3001715.	2.6	14
49	Dynamic positional information: Patterning mechanism versus precision in gradient-driven systems. Current Topics in Developmental Biology, 2020, 137, 219-246.	1.0	11
50	Dynamical modules in metabolism, cell and developmental biology. Interface Focus, 2021, 11, 20210011.	1.5	11
51	Non-canonical dorsoventral patterning in the moth midge Clogmia albipunctata. EvoDevo, 2017, 8, 20.	1.3	7
52	High-resolution gene expression data from blastoderm embryos of the scuttle fly Megaselia abdita. Scientific Data, 2015, 2, 150005.	2.4	5
53	<i>tarsal-less</i> is expressed as a gap gene but has no gap gene phenotype in the moth midge <i>Clogmia albipunctata</i> . Royal Society Open Science, 2018, 5, 180458.	1.1	4
54	Two consecutive microtubule-based epithelial seaming events mediate dorsal closure in the scuttle fly Megaselia abdita. ELife, 2018, 7, .	2.8	1

#ARTICLEIFCITATIONS55Drawing to Extend Waddington's Epigenetic Landscape. Leonardo, 2020, 53, 256-262.0.2156The flow of substance: a reply to Horsting & amp; Hartjes. EMBO Reports, 0, .2.0157Dynamical Modularity of the Genotype-Phenotype Map., 2021, 245-280.0058Life's Attractors Continued: Progress in Understanding Developmental Systems Through Reverse0

JOHANNES JÃ**ë**er