

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3625140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Full-nitro-nitroamino cooperative action: Climbing the energy peak of benzenes with enhanced chemical stability. Science Advances, 2022, 8, eabn3176.	10.3	41
2	[N-N=N-N]-linked fused triazoles with ï€-ï€ stacking and hydrogen bonds: Towards thermally stable, Insensitive, and highly energetic materials. Chemical Engineering Journal, 2021, 406, 126817.	12.7	43
3	From mono-rings to bridged bi-rings to caged bi-rings: a promising design strategy for all-nitrogen high-energy-density materials N10 and N12. New Journal of Chemistry, 2021, 45, 6379-6385.	2.8	7
4	Higher performing and less sensitive CN7â^'-based high-energy-density material. Science China Materials, 2020, 63, 1779-1787.	6.3	8
5	Achieving Cood Molecular Stability in Nitrogen-rich Salts Based on Polyamino Substituted Furazan-triazole. Crystal Growth and Design, 2020, 20, 6084-6092.	3.0	18
6	Modification of crystalline energetic salts through polymorphic transition: enhanced crystal density and energy performance. CrystEngComm, 2020, 22, 4130-4135.	2.6	6
7	Embellishing bis-1,2,4-triazole with four nitroamino groups: advanced high-energy-density materials with remarkable performance and good stability. Journal of Materials Chemistry A, 2020, 8, 11752-11760.	10.3	50
8	All-nitrogen ion-based compounds as energetic oxidizers: a theoretical study on [N5+][NO3â^'], [N5+][N(NO2)2â^'], [NO2+][N5â^'] and NO2–N3. New Journal of Chemistry, 2020, 44, 11188-11195.	2.8	3
9	Energetic furazan–triazoles with high thermal stability and low sensitivity: facile synthesis, crystal structures and energetic properties. CrystEngComm, 2019, 21, 6093-6099.	2.6	15
10	Improving properties of energetic coordination polymers through structural modulation from 1D to 3D without changes of ligands or metal nodes. CrystEngComm, 2019, 21, 937-940.	2.6	3
11	Dancing with 5-substituted monotetrazoles, oxygen-rich ions, and silver: towards primary explosives with positive oxygen balance and excellent energetic performance. Journal of Materials Chemistry A, 2019, 7, 4611-4618.	10.3	38
12	First Structural Characterization of Solvateâ€Free Silver 5â€Nitrotetrazolate and its Comparison with other Energetic Silver Compounds in Structure and Property. Propellants, Explosives, Pyrotechnics, 2019, 44, 803-806.	1.6	2
13	Tetracyclic pyrazine-fused furazans as insensitive energetic materials: syntheses, structures, and properties. Organic and Biomolecular Chemistry, 2018, 16, 8034-8037.	2.8	22
14	Nitramino-functionalized tetracyclic oxadiazoles as energetic materials with high performance and high stability: crystal structures and energetic properties. CrystEngComm, 2018, 20, 4321-4328.	2.6	22
15	Alkali Metalsâ€Based Energetic Coordination Polymers as Promising Primary Explosives: Crystal Structures, Energetic Properties, and Environmental Impact. Chemistry - A European Journal, 2018, 24, 14213-14219.	3.3	27
16	Combination of four oxadiazole rings for the generation of energetic materials with high detonation performance, low sensitivity and excellent thermal stability. Journal of Materials Chemistry A, 2017, 5, 11063-11070.	10.3	54
17	3D-Cube Layer Stacking: A Promising Strategy for High-Performance Insensitive Energetic Materials. Crystal Growth and Design, 2017, 17, 6105-6110.	3.0	27