List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3624881/publications.pdf Version: 2024-02-01

Τριμς Ρλλετλη

#	Article	IF	CITATIONS
1	Technical match actions and plasma stress markers in elite female football players during an official FIFA Tournament. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 127-139.	2.9	8
2	Does Androgen Deprivation for Prostate Cancer Affect Normal Adaptation to Resistance Exercise?. International Journal of Environmental Research and Public Health, 2022, 19, 3820.	2.6	3
3	The Physical Activity and Fitness in Childhood Cancer Survivors (PACCS) Study: Protocol for an International Mixed Methods Study. JMIR Research Protocols, 2022, 11, e35838.	1.0	10
4	Muscular heat shock protein response and muscle damage after semiâ€professional football match. Scandinavian Journal of Medicine and Science in Sports, 2022, 32, 984-996.	2.9	5
5	Muscle Strength Is Associated With Physical Function in Community-Dwelling Older Adults Receiving Home Care. A Cross-Sectional Study. Frontiers in Public Health, 2022, 10, 856632.	2.7	6
6	Risk of Muscle Damage With Blood Flow–Restricted Exercise Should Not Be Overlooked. Clinical Journal of Sport Medicine, 2021, 31, 223-224.	1.8	16
7	Frequent blood flow restricted training not to failure and to failure induces similar gains in myonuclei and muscle mass. Scandinavian Journal of Medicine and Science in Sports, 2021, 31, 1420-1439.	2.9	14
8	Similar Morphological and Functional Training Adaptations Occur Between Continuous and Intermittent Blood Flow Restriction. Journal of Strength and Conditioning Research, 2021, Publish Ahead of Print, 1784-1793.	2.1	4
9	Chronic obstructive pulmonary disease does not impair responses to resistance training. Journal of Translational Medicine, 2021, 19, 292.	4.4	5
10	High-frequency blood flow-restricted resistance exercise results in acute and prolonged cellular stress more pronounced in type I than in type II fibers. Journal of Applied Physiology, 2021, 131, 643-660.	2.5	5
11	Acute cellular and molecular responses and chronic adaptations to low-load blood flow restriction and high-load resistance exercise in trained individuals. Journal of Applied Physiology, 2021, 131, 1731-1749.	2.5	15
12	Reply. Clinical Journal of Sport Medicine, 2021, 31, e513-e513.	1.8	0
13	Strength training and protein supplementation improve muscle mass, strength, and function in mobility-limited older adults: a randomized controlled trial. Aging Clinical and Experimental Research, 2020, 32, 605-616.	2.9	13
14	Muscle memory: are myonuclei ever lost?. Journal of Applied Physiology, 2020, 128, 456-457.	2.5	7
15	Functional and Structural Adaptations of Skeletal Muscle in Longâ€Term Juvenile Dermatomyositis: A Controlled Crossâ€Sectional Study. Arthritis and Rheumatology, 2020, 72, 837-848.	5.6	3
16	Caffeine increases strength and power performance in resistanceâ€trained females during early follicular phase. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 2116-2129.	2.9	18
17	Dietary Adjustments to Altitude Training in Elite Endurance Athletes; Impact of a Randomized Clinical Trial With Antioxidant-Rich Foods. Frontiers in Sports and Active Living, 2020, 2, 106.	1.8	2
18	Effects of acute and chronic strength training on skeletal muscle autophagy in frail elderly men and women. Experimental Gerontology, 2020, 142, 111122.	2.8	4

#	Article	IF	CITATIONS
19	Myocellular Adaptations to Low-Load Blood Flow Restricted Resistance Training. Exercise and Sport Sciences Reviews, 2020, 48, 180-187.	3.0	9
20	Adaptations to strength training differ between endurance-trained and untrained women. European Journal of Applied Physiology, 2020, 120, 1541-1549.	2.5	8
21	The Effects of Cold Water Immersion and Active Recovery on Molecular Factors That Regulate Growth and Remodeling of Skeletal Muscle After Resistance Exercise. Frontiers in Physiology, 2020, 11, 737.	2.8	8
22	Commentary: Can Blood Flow Restricted Exercise Cause Muscle Damage? Commentary on Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Frontiers in Physiology, 2020, 11, 243.	2.8	28
23	Musculoskeletal adaptations to strength training in frail elderly: a matter of quantity or quality?. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 663-677.	7.3	25
24	Sex differences in the physiological response to a demanding military field exercise. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 1348-1359.	2.9	14
25	Native Whey Induces Similar Adaptation to Strength Training as Milk, despite Higher Levels of Leucine, in Elderly Individuals. Nutrients, 2019, 11, 2094.	4.1	9
26	No Difference between Spray Dried Milk and Native Whey Supplementation with Strength Training. Medicine and Science in Sports and Exercise, 2019, 51, 75-83.	0.4	5
27	The impact of age and frailty on skeletal muscle autophagy markers and specific strength: A cross-sectional comparison. Experimental Gerontology, 2019, 125, 110687.	2.8	22
28	External Load Variables Affect Recovery Markers up to 72 h After Semiprofessional Football Matches. Frontiers in Physiology, 2019, 10, 689.	2.8	14
29	Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: A randomized controlled trial. PLoS ONE, 2019, 14, e0217895.	2.5	28
30	Which exercise prescriptions optimize V̇O ₂ max during cancer treatment?—A systematic review and metaâ€analysis. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 1274-1287.	2.9	11
31	Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle. Journal of Applied Physiology, 2019, 126, 1636-1645.	2.5	48
32	Strength training as a supplemental therapy for androgen deficiency of the aging male (ADAM): study protocol for a three-arm clinical trial. BMJ Open, 2019, 9, e025991.	1.9	2
33	Delayed myonuclear addition, myofiber hypertrophy, and increases in strength with high-frequency low-load blood flow restricted training to volitional failure. Journal of Applied Physiology, 2019, 126, 578-592.	2.5	42
34	Type 1 Muscle Fiber Hypertrophy after Blood Flow–restricted Training in Powerlifters. Medicine and Science in Sports and Exercise, 2019, 51, 288-298.	0.4	72
35	Morphological, molecular and hormonal adaptations to early morning versus afternoon resistance training. Chronobiology International, 2018, 35, 450-464.	2.0	23
36	Depressed Physical Performance Outlasts Hormonal Disturbances after Military Training. Medicine and Science in Sports and Exercise, 2018, 50, 2076-2084.	0.4	28

#	Article	IF	CITATIONS
37	Arachidonic acid supplementation transiently augments the acute inflammatory response to resistance exercise in trained men. Journal of Applied Physiology, 2018, 125, 271-286.	2.5	14
38	Divergent effects of cold water immersion versus active recovery on skeletal muscle fiber type and angiogenesis in young men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R824-R833.	1.8	16
39	Effect of dietary arachidonic acid supplementation on acute muscle adaptive responses to resistance exercise in trained men: a randomized controlled trial. Journal of Applied Physiology, 2018, 124, 1080-1091.	2.5	11
40	Consumption of protein-enriched milk has minor effects on inflammation in older adults—A 12-week double-blind randomized controlled trial. Mechanisms of Ageing and Development, 2017, 162, 1-8.	4.6	5
41	Gene expression is differentially regulated in skeletal muscle and circulating immune cells in response to an acute bout of high-load strength exercise. Genes and Nutrition, 2017, 12, 8.	2.5	9
42	Human skeletal muscle plasmalemma alters its structure to change its Ca2+-handling following heavy-load resistance exercise. Nature Communications, 2017, 8, 14266.	12.8	32
43	High doses of vitamin C plus E reduce strength training-induced improvements in areal bone mineral density in elderly men. European Journal of Applied Physiology, 2017, 117, 1073-1084.	2.5	17
44	Design of a randomized controlled trial of physical training and cancer (Phys-Can) – the impact of exercise intensity on cancer related fatigue, quality of life and disease outcome. BMC Cancer, 2017, 17, 218.	2.6	38
45	Heavy strength training improves running and cycling performance following prolonged submaximal work in wellâ€trained female athletes. Physiological Reports, 2017, 5, e13149.	1.7	34
46	Improvement of Ice Hockey Players' On-Ice Sprint With Combined Plyometric and Strength Training. International Journal of Sports Physiology and Performance, 2017, 12, 893-900.	2.3	20
47	Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nature Communications, 2017, 8, 121.	12.8	82
48	Native whey induces higher and faster leucinemia than other whey protein supplements and milk: a randomized controlled trial. BMC Nutrition, 2017, 3, .	1.6	15
49	The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. Journal of Physiology, 2017, 595, 695-711.	2.9	81
50	MicroRNAs in Muscle: Characterizing the Powerlifter Phenotype. Frontiers in Physiology, 2017, 8, 383.	2.8	45
51	Native whey protein with high levels of leucine results in similar post-exercise muscular anabolic responses as regular whey protein: a randomized controlled trial. Journal of the International Society of Sports Nutrition, 2017, 14, 43.	3.9	30
52	Reduced Appendicular Lean Body Mass, Muscle Strength, and Size of Type II Muscle Fibers in Patients with Spondyloarthritis versus Healthy Controls: A Cross-Sectional Study. Scientific World Journal, The, 2016, 2016, 1-11.	2.1	7
53	Ibuprofen Ingestion Does Not Affect Markers of Post-exercise Muscle Inflammation. Frontiers in Physiology, 2016, 7, 86.	2.8	15
54	Vitamin <scp>C</scp> and <scp>E</scp> supplementation blunts increases in total lean body mass in elderly men after strength training. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 755-763.	2.9	82

#	Article	IF	CITATIONS
55	Validity, Reliability, and Performance Determinants of a New Job-Specific Anaerobic Work Capacity Test for the Norwegian Navy Special Operations Command. Journal of Strength and Conditioning Research, 2016, 30, 487-496.	2.1	20
56	Effects of strength training on muscle cellular outcomes in prostate cancer patients on androgen deprivation therapy. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 1026-1035.	2.9	36
57	Impact of resistance exercise on ribosome biogenesis is acutely regulated by post-exercise recovery strategies. Physiological Reports, 2016, 4, e12670.	1.7	86
58	Strength training improves cycling performance, fractional utilization of VO _{2max} and cycling economy in female cyclists. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 384-396.	2.9	53
59	Effects of Heavy Strength Training on Running Performance and Determinants of Running Performance in Female Endurance Athletes. PLoS ONE, 2016, 11, e0150799.	2.5	42
60	Effect of Traditional and Resisted Sprint Training in Highly Trained Female Team Handball Players. International Journal of Sports Physiology and Performance, 2015, 10, 642-647.	2.3	18
61	Postâ€exercise cold water immersion attenuates acute anabolic signalling and longâ€ŧerm adaptations in muscle to strength training. Journal of Physiology, 2015, 593, 4285-4301.	2.9	157
62	Development and Implementation of a New Physical Training Concept in the Norwegian Navy Special Operations Command. Journal of Strength and Conditioning Research, 2015, 29, S204-S210.	2.1	20
63	BMC Nutrition: the voice of nutrition within the BMC series. BMC Nutrition, 2015, 1, .	1.6	10
64	Modulating exercise-induced hormesis: Does less equal more?. Journal of Applied Physiology, 2015, 119, 172-189.	2.5	62
65	Effects of strength training on body composition, physical functioning, and quality of life in prostate cancer patients during androgen deprivation therapy. Acta Oncológica, 2015, 54, 1805-1813.	1.8	105
66	Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R767-R779.	1.8	97
67	Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a doubleâ€blind, randomised, controlled trial. Journal of Physiology, 2014, 592, 1887-1901.	2.9	226
68	Does Vitamin D Improve Muscle Strength in Adults? A Randomized, Double-blind, Placebo-controlled Trial Among Ethnic Minorities in Norway. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 194-202.	3.6	42
69	Effects of vitamin C and E supplementation on endogenous antioxidant systems and heat shock proteins in response to endurance training. Physiological Reports, 2014, 2, e12142.	1.7	22
70	Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10Âweeks of training. Journal of Physiology, 2014, 592, 5391-5408.	2.9	116
71	Can supplementation with vitamin C and E alter physiological adaptations to strength training?. BMC Sports Science, Medicine and Rehabilitation, 2014, 6, 28.	1.7	23
72	Irisin and FNDC5: effects of 12-week strength training, and relations to muscle phenotype and body mass composition in untrained women. European Journal of Applied Physiology, 2014, 114, 1875-1888.	2.5	68

#	Article	IF	CITATIONS
73	Acute response and subcellular movement of <scp>HSP</scp> 27, <i>α</i> Bâ€crystallin and <scp>HSP</scp> 70 in human skeletal muscle after bloodâ€flowâ€restricted lowâ€load resistance exercise. Acta Physiologica, 2014, 211, 634-646.	3.8	59
74	Cold Water Immersion Reduces Chronic Resistance Training-Induced Adaptation. Medicine and Science in Sports and Exercise, 2014, 46, 246.	0.4	1
75	The effect of strength training volume on satellite cells, myogenic regulatory factors, and growth factors. Scandinavian Journal of Medicine and Science in Sports, 2013, 23, 728-739.	2.9	39
76	Acute low-load resistance exercise with and without blood flow restriction increased protein signalling and number of satellite cells in human skeletal muscle. European Journal of Applied Physiology, 2013, 113, 2953-2965.	2.5	47
77	Effects of time of day on resistance exercise-induced anabolic signaling in skeletal muscle. Biological Rhythm Research, 2013, 44, 756-770.	0.9	10
78	Effect of range of motion in heavy load squatting on muscle and tendon adaptations. European Journal of Applied Physiology, 2013, 113, 2133-2142.	2.5	133
79	Effect of nutritional intervention on body composition and performance in elite athletes. European Journal of Sport Science, 2013, 13, 295-303.	2.7	42
80	Inflammatory markers CD11b, CD16, CD66b, CD68, myeloperoxidase and neutrophil elastase in eccentric exercised human skeletal muscles. Histochemistry and Cell Biology, 2013, 139, 691-715.	1.7	30
81	Mechanical properties of the patellar tendon in elite volleyball players with and without patellar tendinopathy. British Journal of Sports Medicine, 2013, 47, 862-868.	6.7	89
82	Effects of different types of exercise on muscle mass, strength, function and wellâ€being in elderly. European Journal of Sport Science, 2013, 13, 112-125.	2.7	35
83	Evidence against a Beneficial Effect of Irisin in Humans. PLoS ONE, 2013, 8, e73680.	2.5	261
84	Strength Training Affects Tendon Cross-Sectional Area and Freely Chosen Cadence Differently in Noncyclists and Well-Trained Cyclists. Journal of Strength and Conditioning Research, 2012, 26, 158-166.	2.1	16
85	Cyclists' Improvement of Pedaling Efficacy and Performance After Heavy Strength Training. International Journal of Sports Physiology and Performance, 2012, 7, 313-321.	2.3	16
86	Sarcolemmal permeability and muscle damage as hypertrophic stimuli in blood flow restricted resistance exercise (Reply to Loenneke and Abe). European Journal of Applied Physiology, 2012, 112, 3447-3449.	2.5	3
87	Expression of perilipins in human skeletal musclein vitroandin vivoin relation to diet, exercise and energy balance. Archives of Physiology and Biochemistry, 2012, 118, 22-30.	2.1	28
88	A randomized controlled trial on the effectiveness of strength training on clinical and muscle cellular outcomes in patients with prostate cancer during androgen deprivation therapy: rationale and design. BMC Cancer, 2012, 12, 123.	2.6	27
89	Strength training elevates HSP27, HSP70 and $\hat{I}\pm B$ -crystallin levels in musculi vastus lateralis and trapezius. European Journal of Applied Physiology, 2012, 112, 1773-1782.	2.5	37
90	Strength and hypertrophy with resistance training: chasing a hormonal ghost. European Journal of Applied Physiology, 2012, 112, 1985-1987.	2.5	2

#	Article	lF	CITATIONS
91	Contractile function and sarcolemmal permeability after acute low-load resistance exercise with blood flow restriction. European Journal of Applied Physiology, 2012, 112, 2051-2063.	2.5	68
92	Effect of heavy strength training on muscle thickness, strength, jump performance, and endurance performance in well-trained Nordic Combined athletes. European Journal of Applied Physiology, 2012, 112, 2341-2352.	2.5	43
93	High volume of endurance training impairs adaptations to 12Âweeks of strength training in well-trained endurance athletes. European Journal of Applied Physiology, 2012, 112, 1457-1466.	2.5	61
94	Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise?. Exercise Immunology Review, 2012, 18, 42-97.	0.4	335
95	Long-term effect of nutritional counselling on desired gain in body mass and lean body mass in elite athletes. Applied Physiology, Nutrition and Metabolism, 2011, 36, 547-554.	1.9	12
96	Effects of In-Season Strength Maintenance Training Frequency in Professional Soccer Players. Journal of Strength and Conditioning Research, 2011, 25, 2653-2660.	2.1	89
97	Long-Term Effect of Weight Loss on Body Composition and Performance in Elite Athletes. International Journal of Sport Nutrition and Exercise Metabolism, 2011, 21, 426-435.	2.1	23
98	Effect of Two Different Weight-Loss Rates on Body Composition and Strength and Power-Related Performance in Elite Athletes. International Journal of Sport Nutrition and Exercise Metabolism, 2011, 21, 97-104.	2.1	150
99	Strength training improves 5â€min allâ€out performance following 185 min of cycling. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 250-259.	2.9	69
100	The effect of heavy strength training on muscle mass and physical performance in elite cross country skiers. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 389-401.	2.9	81
101	Physiological elevation of endogenous hormones results in superior strength training adaptation. European Journal of Applied Physiology, 2011, 111, 2249-2259.	2.5	89
102	Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1013-E1021.	3.5	159
103	Active recovery training does not affect the antioxidant response to soccer games in elite female players. British Journal of Nutrition, 2010, 104, 1492-1499.	2.3	23
104	Changes in Calpain Activity, Muscle Structure, and Function after Eccentric Exercise. Medicine and Science in Sports and Exercise, 2010, 42, 86-95.	0.4	115
105	Time Course of Leukocyte Accumulation in Human Muscle after Eccentric Exercise. Medicine and Science in Sports and Exercise, 2010, 42, 75-85.	0.4	165
106	Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. European Journal of Applied Physiology, 2010, 108, 965-975.	2.5	112
107	In-season strength maintenance training increases well-trained cyclists' performance. European Journal of Applied Physiology, 2010, 110, 1269-1282.	2.5	55
108	A COXâ€2 inhibitor reduces muscle soreness, but does not influence recovery and adaptation after eccentric exercise. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, e195-207.	2.9	98

#	Article	IF	CITATIONS
109	Plasma antioxidant responses and oxidative stress following a soccer game in elite female players. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, 600-608.	2.9	38
110	Differences in the inflammatory plasma cytokine response following two elite female soccer games separated by a 72-h recovery. Scandinavian Journal of Medicine and Science in Sports, 2010, 20, 740-747.	2.9	74
111	IL-7 is expressed and secreted by human skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2010, 298, C807-C816.	4.6	170
112	Gross ultrastructural changes and necrotic fiber segments in elbow flexor muscles after maximal voluntary eccentric action in humans. Journal of Applied Physiology, 2009, 107, 1923-1934.	2.5	98
113	Subcellular movement and expression of HSP27, αB-crystallin, and HSP70 after two bouts of eccentric exercise in humans. Journal of Applied Physiology, 2009, 107, 570-582.	2.5	105
114	Heat shock protein translocation and expression response is attenuated in response to repeated eccentric exercise. Acta Physiologica, 2009, 196, 283-293.	3.8	32
115	Two short questionnaires on leisure-time physical activity compared with serum lipids, anthropometric measurements and aerobic power in a suburban population from Oslo, Norway. European Journal of Epidemiology, 2008, 23, 167-174.	5.7	51
116	Ischemic strength training: a lowâ€load alternative to heavy resistance exercise?. Scandinavian Journal of Medicine and Science in Sports, 2008, 18, 401-416.	2.9	118
117	Immunohistochemical changes in the expression of HSP27 in exercised human vastus lateralis muscle. Acta Physiologica, 2008, 194, 215-222.	3.8	23
118	Neuromuscular Fatigue and Recovery in Elite Female Soccer. Medicine and Science in Sports and Exercise, 2008, 40, 372-380.	0.4	242
119	Short-Term Effects of Strength and Plyometric Training on Sprint and Jump Performance in Professional Soccer Players. Journal of Strength and Conditioning Research, 2008, 22, 773-780.	2.1	183
120	Maximal eccentric exercise induces a rapid accumulation of small heat shock proteins on myofibrils and a delayed HSP70 response in humans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R844-R853.	1.8	130
121	DISSIMILAR EFFECTS OF ONE- AND THREE-SET STRENGTH TRAINING ON STRENGTH AND MUSCLE MASS GAINS IN UPPER AND LOWER BODY IN UNTRAINED SUBJECTS. Journal of Strength and Conditioning Research, 2007, 21, 157-163.	2.1	106
122	An adapted version of the long International Physical Activity Questionnaire (IPAQ-L): construct validity in a low-income, multiethnic population study from Oslo, Norway. International Journal of Behavioral Nutrition and Physical Activity, 2007, 4, 13.	4.6	44
123	Calpain/calpastatin activities and substrate depletion patterns during hindlimb unweighting and reweighting in skeletal muscle. European Journal of Applied Physiology, 2007, 100, 445-455.	2.5	71
124	Strength training reduces freely chosen pedal rate during submaximal cycling. European Journal of Applied Physiology, 2007, 101, 419-426.	2.5	23
125	Promoting Physical Activity in a Low-Income Multiethnic District: Effects of a Community Intervention Study to Reduce Risk Factors for Type 2 Diabetes and Cardiovascular Disease: A community intervention reducing inactivity. Diabetes Care, 2006, 29, 1605-1612.	8.6	66
126	Delayed Leukocytosis and Cytokine Response to High-Force Eccentric Exercise. Medicine and Science in Sports and Exercise, 2005, 37, 1877-1883.	0.4	90

#	Article	IF	CITATIONS
127	Delayed leukocytosis after hard strength and endurance exercise: aspects of regulatory mechanisms. BMC Physiology, 2003, 3, 14.	3.6	40
128	Promoting physical activity in a multi-ethnic district - methods and baseline results of a pseudo-experimental intervention study. European Journal of Cardiovascular Prevention and Rehabilitation, 2003, 10, 387-396.	2.8	27
129	Temporal relation between leukocyte accumulation in muscles and halted recovery 10–20 h after strength exercise. Journal of Applied Physiology, 2003, 95, 2503-2509.	2.5	38
130	The Influence of Volume of Exercise on Early Adaptations to Strength Training. Journal of Strength and Conditioning Research, 2003, 17, 115.	2.1	52
131	Changes in human skeletal muscle contractility and hormone status during 2 weeks of heavy strength training. European Journal of Applied Physiology, 2001, 84, 54-63.	2.5	62
132	Hormonal responses to high- and moderate-intensity strength exercise. European Journal of Applied Physiology, 2000, 82, 121-128.	2.5	168
133	Recovery of skeletal muscle contractility after high- and moderate-intensity strength exercise. European Journal of Applied Physiology, 2000, 82, 206-214.	2.5	83