Xiaobo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3624662/publications.pdf Version: 2024-02-01

759233 752698 25 440 12 20 h-index citations g-index papers 25 25 25 459 docs citations times ranked citing authors all docs

XIAORO WANC

#	Article	IF	CITATIONS
1	Detection of glucose in diabetic tears by using gold nanoparticles and MXene composite surface-enhanced Raman scattering substrates. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 266, 120432.	3.9	33
2	Acridine-based dyes as high-performance near-infrared Raman reporter molecules for cell imaging. RSC Advances, 2022, 12, 3380-3385.	3.6	2
3	An Electrically and Thermally Erasable Liquid Crystal Film Containing NIR Absorbent Carbon Nanotube. Molecules, 2022, 27, 562.	3.8	5
4	Epoxy Vitrimer Based on Temperatureâ€Responsive Pure Organic Room Temperature Phosphorescent Materials. ChemistrySelect, 2022, 7, .	1.5	6
5	Self-assembly and cellular distribution of a series of transformable peptides. Journal of Materials Chemistry B, 2022, 10, 3886-3894.	5.8	1
6	Quantification of uric acid concentration in tears by using PDMS inverse opal structure surface-enhanced Raman scattering substrates: Application in hyperuricemia. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 278, 121326.	3.9	6
7	Research Progress of Cholesteric Liquid Crystals with Broadband Reflection. Molecules, 2022, 27, 4427.	3.8	14
8	Vitrimer enhanced carbazole-based organic room-temperature phosphorescent materials. New Journal of Chemistry, 2021, 46, 276-281.	2.8	5
9	Double-click synthesis of polysiloxane third-order nonlinear optical polymers with donor–acceptor chromophores. Polymer Chemistry, 2020, 11, 3046-3053.	3.9	8
10	Large-sized benzo[<i>e</i>]indolium salt single crystals with high optical nonlinearity. CrystEngComm, 2019, 21, 5626-5632.	2.6	12
11	Synthesis and application of reversible fluorescent photochromic molecules based on tetraphenylethylene and photochromic groups. New Journal of Chemistry, 2019, 43, 617-621.	2.8	31
12	Third-order nonlinear optical properties of the "clicked―closed-ring spiropyrans. Dyes and Pigments, 2019, 162, 451-458.	3.7	11
13	Silica aerogel films via ambient pressure drying for broadband reflectors. New Journal of Chemistry, 2018, 42, 6525-6531.	2.8	11
14	The temperature range and optical properties of the liquid crystalline blue phase in inverse opal structures. Journal of Materials Chemistry C, 2018, 6, 11071-11077.	5.5	6
15	Binary "island―shaped arrays with high-density hot spots for surface-enhanced Raman scattering substrates. Nanoscale, 2018, 10, 14220-14229.	5.6	48
16	Nonlinear optical properties of the novel kind of organic donor-acceptor thiophene derivatives with click chemistry modification. Tetrahedron, 2017, 73, 6210-6216.	1.9	21
17	The application of double click to synthesize a third-order nonlinear polymer containing donor–acceptor chromophores. Polymer Chemistry, 2016, 7, 3714-3721.	3.9	27
18	Application of Nearâ€IR Absorption Porphyrin Dyes Derived from Click Chemistry as Thirdâ€Order Nonlinear Optical Materials. ChemistryOpen, 2016, 5, 71-77.	1.9	16

XIAOBO WANG

#	Article	IF	CITATIONS
19	Energy-level tuning of poly(p-phenylenebutadiynylene) derivatives by click chemistry-type postfunctionalization of side-chain alkynes. Reactive and Functional Polymers, 2016, 105, 114-121.	4.1	10
20	Facile synthesis of functional poly(vinylene sulfide)s containing donor–acceptor chromophores by a double click reaction. RSC Advances, 2016, 6, 59327-59332.	3.6	16
21	Click chemistry functionalization improving the wideband optical-limiting performance of fullerene derivatives. Physical Chemistry Chemical Physics, 2016, 18, 7341-7348.	2.8	28
22	Engineering of Organic Chromophores with Large Second-Order Optical Nonlinearity and Superior Crystal Growth Ability. Crystal Growth and Design, 2015, 15, 5560-5567.	3.0	30
23	Energy level tunable pre-click functionalization of [60]fullerene forÂnonlinear optics. Tetrahedron, 2014, 70, 573-577.	1.9	33
24	Efficient modification of pyrene-derivative featuring third-order nonlinear optics via the click post-functionalization. Tetrahedron Letters, 2013, 54, 4859-4864.	1.4	46
25	Ladder-type poly(benzopentalene) derivatives with tunable energy levels by "click―reaction. Polymer Chemistry, 2012, 3, 914.	3.9	14