Qiulun Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3624207/publications.pdf

Version: 2024-02-01

28	1,298	17 h-index	29
papers	citations		g-index
30	30	30	2056
all docs	docs citations	times ranked	citing authors

Article	IF	CITATIONS
Binding of FUN14 Domain Containing 1 With Inositol 1,4,5-Trisphosphate Receptor in Mitochondria-Associated Endoplasmic Reticulum Membranes Maintains Mitochondrial Dynamics and Function in Hearts in Vivo. Circulation, 2017, 136, 2248-2266.	1.6	193
Hyperglycemia-Driven Inhibition of AMP-Activated Protein Kinase α2 Induces Diabetic Cardiomyopathy by Promoting Mitochondria-Associated Endoplasmic Reticulum Membranes In Vivo. Circulation, 2019, 139, 1913-1936.	1.6	166
A non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and neart failure. Nature Communications, 2017, 8, 133.	12.8	160
Circulating miR-103a-3p contributes to angiotensin II-induced renal inflammation and fibrosis via a SNRK/NF-№B/p65 regulatory axis. Nature Communications, 2019, 10, 2145.	12.8	106
² -Hydroxybutyrate Prevents Vascular Senescence through hnRNP A1-Mediated Upregulation of Oct4. Molecular Cell, 2018, 71, 1064-1078.e5.	9.7	89
Ablation of Adenosine Monophosphate-Activated Protein Kinase $\hat{l}\pm 1$ in Vascular Smooth Muscle Cells Promotes Diet-Induced Atherosclerotic Calcification In Vivo. Circulation Research, 2016, 119, 422-433.	4.5	83
Angiogenic Factor AGGF1 Activates Autophagy with an Essential Role in Therapeutic Angiogenesis for Heart Disease. PLoS Biology, 2016, 14, e1002529.	5.6	7 5
AMP-Activated Protein Kinase Alpha 2 Deletion Induces VSMC Phenotypic Switching and Reduces Features of Atherosclerotic Plaque Stability. Circulation Research, 2016, 119, 718-730.	4.5	67
Molecular Basis of Gene-Gene Interaction: Cyclic Cross-Regulation of Gene Expression and Post-GWAS Gene-Gene Interaction Involved in Atrial Fibrillation. PLoS Genetics, 2015, 11, e1005393.	3.5	47
SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 Toll-Like Receptor 3)–Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like) Tj ETQq0 0	OlmgBT/O	v ar lock 10 T
Angiogenic Factor AGGF1 Promotes Therapeutic Angiogenesis in a Mouse Limb Ischemia Model. PLoS DNE, 2012, 7, e46998.	2.5	43
SNRK (Sucrose Nonfermenting 1-Related Kinase) Promotes Angiogenesis In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 373-385.	2.4	31
Peroxynitrite-Mediated SIRT (Sirtuin)-1 Inactivation Contributes to Nicotine-Induced Arterial Stiffness n Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1419-1431.	2.4	25
Endothelial Nitric Oxide Synthase–Derived Nitric Oxide Prevents Dihydrofolate Reductase Degradation via Promoting S-Nitrosylation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2366-2373.	2.4	22
Autophagic degradation of KAT2A/GCN5 promotes directional migration of vascular smooth muscle cells by reducing TUBA/α-tubulin acetylation. Autophagy, 2020, 16, 1753-1770.	9.1	21
Melatonin Alleviates Cardiac Function in Sepsis-Caused Myocarditis via Maintenance of Mitochondrial Function. Frontiers in Nutrition, 2021, 8, 754235.	3.7	19
Type I Diabetic Akita Mouse Model is Characterized by Abnormal Cardiac Deformation During Early Stages of Diabetic Cardiomyopathy with Speckle-Tracking Based Strain Imaging. Cellular Physiology and Biochemistry, 2018, 45, 1541-1550.	1.6	18
Dioscin <i>elevates</i> IncRNA MANTIS in therapeutic angiogenesis for heart diseases. Aging Cell, 2021, 20, e13392.	6.7	18
ME HERE AND SITE OF MET TOTAL	intentionality and the Associated Endoplasmic Reticulum Membranes Maintains Mitochondrial Dynamics and uncetton in Hearts in Wwo. Circulation, 2017, 136, 2248-2266. yperglycemia-Driven Inhibition of AMP-Activated Protein Kinase [a2] Induces Diabetic Cardiomyopathy by romoting Mitochondria-Associated Endoplasmic Reticulum Membranes in Vivo. Circulation, 2019, 139, 131-1395. non-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and eart failure. Nature Communications, 2017, 8, 133. irculating miR-103a-3p contributes to angiotensin H-induced renal inflammation and fibrosis via a NRK/INF-Bighof regulatory axis. Nature Communications, 2019, 10, 2145. Hydroxybutyrate Provents Vascular Senescence through hnRNP A1-Mediated Upregulation of Oct4. blocular Cell, 2018, 71, 1064-1078-85. blotton of Adenosine Monophosphate-Activated Protein Kinase in In Vascular Smooth Muscle Cells romotes Diet-Induced Atherosclerotic Calcification in Vivo. Circulation Research, 2016, 119, 422-433. Inglogenic Factor AGGF1 Activates Autophagy with an Essential Role in Therapeutic Angiogenesis for eart Disease. PLoS Biology, 2016, 14, e1002529. MP-Activated Protein Kinase Alpha 2 Deletion Induces VSMC Phenotypic Switching and Reduces eatures of Atherosclerotic Plaque Stability. Circulation Research, 2016, 119, 718-730. MP-Activated Protein Kinase Alpha 2 Deletion Induces VSMC Phenotypic Switching and Reduces eatures of Atherosclerotic Plaque Stability. Circulation Research, 2016, 119, 718-730. MP-Activated Protein Kinase Alpha 2 Deletion Induces VSMC Phenotypic Switching and Reduces eatures of Atherosclerotic Plaque Stability. Circulation Research, 2016, 119, 718-730. MP-Activated Protein Kinase Alpha 2 Deletion Induces VSMC Phenotypic Switching and Reduces eatures of Atherosclerotic Plaque Stability. Circulation Research, 2015, 119, 718-730. NO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 oli-Like Receptor 3)ae* Mediated RIP3 (Receptor-Inter	Intechandra-Associated Endoplasmic Reticulum Membranes Maintains Mitochondrial Dynamics and microtion in Hearts in Vivo. Circulation, 2017, 136, 2248-2266. International Tyrien Inhibition of AMP-Activated Protein Kinase [±2 Induces Diabetic Cardiomyopathy by comoting Mitochondria-Associated Endoplasmic Reticulum Membranes in Vivo. Circulation, 2019, 139, 116 113-13936. Inon-canonical pathway regulates ER stress signaling and blocks ER stress-induced apoptosis and eart failure. Nature Communications, 2017, 8, 133. Inculating miR-103a-3p contributes to angiotensin H-induced renal inflammation and fibrosis via a NRK/NF-PB/p65 regulatory axis. Nature Communications, 2019, 10, 2145. Hydroxybutyrate Prevents Vascular Senescence through hnRNP A1 Mediated Upregulation of Oct4. Indicating miR-103a-3p contributes to angiotensin H-induced renal inflammation and fibrosis via a NRK/NF-PB/p65 regulatory axis. Nature Communications, 2019, 10, 2145. Hydroxybutyrate Prevents Vascular Senescence through hnRNP A1 Mediated Upregulation of Oct4. Indicating miR-103a-3p contributes to angiotensin H-induced renal inflammation and fibrosis via a NRK/NF-PB/p65 regulatory axis. Nature Communications, 2019, 10, 2145. Hydroxybutyrate Prevents Vascular Senescence through hnRNP A1 Mediated Upregulation of Oct4. Indicating miR-103a-3p contributes the Activated Protein Kinase ½ I in Vascular Smooth Muscle Cells common to the Distributed Atheroscierotic Calcification in Vivo. Circulation Research, 2016, 119, 422-433. Indicating miR-104-107a-105-105-106-106-106-106-106-106-106-106-106-106

#	Article	IF	CITATION
19	Heterotrimeric G Stimulatory Protein α Subunit Is Required forÂlntestinal Smooth Muscle Contraction in Mice. Gastroenterology, 2017, 152, 1114-1125.e5.	1.3	12
20	Renal Resistive Index as a Novel Indicator for Renal Complications in High-Fat Diet-Fed Mice. Kidney and Blood Pressure Research, 2017, 42, 1128-1140.	2.0	12
21	The $3\hat{a}\in^2$ Untranslated Region Protects the Heart from Angiotensin II-Induced Cardiac Dysfunction via AGGF1 Expression. Molecular Therapy, 2020, 28, 1119-1132.	8.2	10
22	Melatonin Alleviates Renal Injury in Mouse Model of Sepsis. Frontiers in Pharmacology, 2021, 12, 697643.	3.5	7
23	AMPK $\hat{l}\pm 1$ deletion in fibroblasts promotes tumorigenesis in athymic nude mice by p52-mediated elevation of erythropoietin and CDK2. Oncotarget, 2016, 7, 53654-53667.	1.8	6
24	Dioscin Attenuates Myocardial Ischemic/Reperfusion-Induced Cardiac Dysfunction through Suppression of Reactive Oxygen Species. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-8.	4.0	5
25	Dioscin Alleviates Cardiac Dysfunction in Acute Myocardial Infarction via Rescuing Mitochondrial Malfunction. Frontiers in Cardiovascular Medicine, 2022, 9, 783426.	2.4	4
26	Pulsatility Index as a Novel Parameter for Perfusion in Mouse Model of Hindlimb Ischemia. Cellular Physiology and Biochemistry, 2018, 48, 2114-2122.	1.6	3
27	The Anti-apoptotic Role of 3′-Untranslational Region in Response to Angiotensin II via Mcl1 Expression. Frontiers in Cell and Developmental Biology, 2020, 8, 593955.	3.7	2
28	Diosmin Alleviates Venous Injury and Muscle Damage in a Mouse Model of Iliac Vein Stenosis. Frontiers in Cardiovascular Medicine, 2021, 8, 785554.	2.4	2