
Sandra Torriani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3624139/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA Gene Sequence Analysis and Multiplex PCR Assay with recA Gene-Derived Primers. Applied and Environmental Microbiology, 2001, 67, 3450-3454.	1.4	556
2	Diversity, Dynamics, and Activity of Bacterial Communities during Production of an Artisanal Sicilian Cheese as Evaluated by 16S rRNA Analysis. Applied and Environmental Microbiology, 2002, 68, 1882-1892.	1.4	332
3	The Genus Lactobacillus: A Taxonomic Update. Probiotics and Antimicrobial Proteins, 2012, 4, 217-226.	1.9	234
4	Genus-Wide Assessment of Antibiotic Resistance in <i>Lactobacillus</i> spp. Applied and Environmental Microbiology, 2019, 85, .	1.4	190
5	Bacterial composition of commercial probiotic products as evaluated by PCR-DGGE analysis. International Journal of Food Microbiology, 2003, 82, 59-70.	2.1	183
6	Development of Reverse Transcription (RT)-PCR and Real-Time RT-PCR Assays for Rapid Detection and Quantification of Viable Yeasts and Molds Contaminating Yogurts and Pasteurized Food Products. Applied and Environmental Microbiology, 2003, 69, 4116-4122.	1.4	153
7	Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunology and Medical Microbiology, 2007, 51, 562-568.	2.7	140
8	Phenotypic and genetic diversity of enterococci isolated from Italian cheeses. Journal of Dairy Research, 2001, 68, 303-316.	0.7	139
9	Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese. Food Microbiology, 2006, 23, 641-648.	2.1	131
10	Candida zemplinina Can Reduce Acetic Acid Produced by Saccharomyces cerevisiae in Sweet Wine Fermentations. Applied and Environmental Microbiology, 2012, 78, 1987-1994.	1.4	122
11	Use of PCR-Based Methods for Rapid Differentiation of <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i> and <i>L. delbrueckii</i> subsp. <i>lactis</i> . Applied and Environmental Microbiology, 1999, 65, 4351-4356.	1.4	121
12	Application of antimicrobialâ€producing lactic acid bacteria to control pathogens in readyâ€toâ€use vegetables. Journal of Applied Bacteriology, 1996, 81, 113-119.	1.1	119
13	Molecular identification and osmotolerant profile of wine yeasts that ferment a high sugar grape must. International Journal of Food Microbiology, 2009, 130, 179-187.	2.1	114
14	Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. International Journal of Food Microbiology, 2020, 318, 108470.	2.1	113
15	Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1629-1634.	0.8	112
16	Horizontal gene transfer among microorganisms in food: Current knowledge and future perspectives. Food Microbiology, 2014, 42, 232-243.	2.1	108
17	Diversity of stress tolerance in Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum: A multivariate screening study. International Journal of Food Microbiology, 2010, 144, 270-279.	2.1	105
18	Design and evaluation of malolactic enzyme gene targeted primers for rapid identification and detection of Oenococcus oeni in wine. Letters in Applied Microbiology, 1998, 27, 243-246.	1.0	101

#	Article	IF	CITATIONS
19	Genomic Diversity of <i>Lactobacillus salivarius</i> . Applied and Environmental Microbiology, 2011, 77, 954-965.	1.4	101
20	Comparative sequence analysis of a recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group International Journal of Systematic and Evolutionary Microbiology, 2001, 51, 2113-2117.	0.8	100
21	Diversity of Candida zemplinina strains from grapes and Italian wines. Food Microbiology, 2012, 29, 18-26.	2.1	100
22	Genomic DNA Fingerprinting of Oenococcus oeni Strains by Pulsed-Field Gel Electrophoresis and Randomly Amplified Polymorphic DNA-PCR. Current Microbiology, 2000, 40, 351-355.	1.0	96
23	Intraspecies Genomic Groups in Enterococcus faecium and Their Correlation with Origin and Pathogenicity. Applied and Environmental Microbiology, 2002, 68, 1381-1391.	1.4	93
24	A FTIR microspectroscopy study of autolysis in cells of the wine yeast Saccharomyces cerevisiae. Vibrational Spectroscopy, 2008, 47, 139-147.	1.2	92
25	Production of biogenic amines during the ripening of Pecorino Abruzzese cheese. International Dairy Journal, 2005, 15, 571-578.	1.5	91
26	Bacteriocin production and gene sequencing analysis from vaginal Lactobacillus strains. Archives of Microbiology, 2014, 196, 645-653.	1.0	91
27	Differentiation ofLactobacillus sanfranciscensisstrains by randomly amplified polymorphic DNA and pulsed-field gel electrophoresis. FEMS Microbiology Letters, 1998, 166, 325-332.	0.7	90
28	Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2016, 32, 700-709.	1.7	85
29	Rapid detection of viable yeasts and bacteria in wine by flow cytometry. Journal of Microbiological Methods, 2001, 45, 127-134.	0.7	76
30	Differentiation of Lactobacillus plantarum, L. pentosus and L. paraplantarum Species by RAPD-PCR and AFLP. Systematic and Applied Microbiology, 2001, 24, 554-560.	1.2	76
31	Integrate genome-based assessment of safety for probiotic strains: Bacillus coagulans GBI-30, 6086 as a case study. Applied Microbiology and Biotechnology, 2016, 100, 4595-4605.	1.7	76
32	Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine. Diversity of Saccharomyces strains from Amarone wine. Antonie Van Leeuwenhoek, 1999, 75, 207-215.	0.7	75
33	Quantitative Analysis of Histidine Decarboxylase Gene (hdcA) Transcription and Histamine Production by Streptococcus thermophilus PRI60 under Conditions Relevant to Cheese Making. Applied and Environmental Microbiology, 2011, 77, 2817-2822.	1.4	75
34	Biodiversity and characterization of indigenous coagulase-negative staphylococci isolated from raw milk and cheese of North Italy. Food Microbiology, 2013, 34, 106-111.	2.1	68
35	Identification of probiotic microorganisms in South African products using PCR-based DGCE analysis. International Journal of Food Microbiology, 2005, 98, 11-21.	2.1	65
36	Lactobacillus delbrueckii subsp. indicus subsp. nov., isolated from Indian dairy products. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 401-404.	0.8	65

#	Article	IF	CITATIONS
37	Rapid Detection and Quantification of Tyrosine Decarboxylase Gene (tdc) and Its Expression in Gram-Positive Bacteria Associated with Fermented Foods Using PCR-Based Methods. Journal of Food Protection, 2008, 71, 93-101.	0.8	62
38	ldentification by 16S-23S rDNA intergenic region amplification, genotypic and phenotypic clustering of Staphylococcus xylosus strains from dry sausages. Journal of Applied Microbiology, 2001, 90, 365-371.	1.4	61
39	Inhibitory effect of selected lactic acid bacteria on microflora associated with ready-to-use vegetables. Letters in Applied Microbiology, 1995, 21, 121-125.	1.0	60
40	Reclassification of Lactobacillus catenaformis (Eggerth 1935) Moore and Holdeman 1970 and Lactobacillus vitulinus Sharpe et al. 1973 as Eggerthia catenaformis gen. nov., comb. nov. and Kandleria vitulina gen. nov., comb. nov., respectively. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2520-2524.	0.8	60
41	Contribution of Enterococci to the Spread of Antibiotic Resistance in the Production Chain of Swine Meat Commodities. Journal of Food Protection, 2005, 68, 955-965.	0.8	59
42	Antibiotic resistance genes and identification of staphylococci collected from the production chain of swine meat commodities. Food Microbiology, 2008, 25, 196-201.	2.1	59
43	Effects of the diameter on physico-chemical, microbiological and volatile profile in dry fermented sausages produced with two different starter cultures. Food Bioscience, 2018, 22, 9-18.	2.0	58
44	Molecular diversity and transferability of the tetracycline resistance gene tet(M), carried on Tn916-1545 family transposons, in enterococci from a total food chain. Antonie Van Leeuwenhoek, 2009, 96, 43-52.	0.7	57
45	Use of ATR-FTIR Microspectroscopy to Monitor Autolysis of <i>Saccharomyces cerevisiae</i> Cells in a Base Wine. Journal of Agricultural and Food Chemistry, 2010, 58, 39-45.	2.4	56
46	Evaluation of aroma production and survival of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus in fermented milks. International Dairy Journal, 1999, 9, 125-134.	1.5	55
47	Antibiotic Susceptibility Profiles of Dairy Leuconostoc, Analysis of the Genetic Basis of Atypical Resistances and Transfer of Genes In Vitro and in a Food Matrix. PLoS ONE, 2016, 11, e0145203.	1.1	55
48	DNAâ€ÐNA homology, physiological characteristics and distribution of lactic acid bacteria isolated from maize silage. Journal of Applied Bacteriology, 1986, 60, 83-92.	1,1	54
49	A survey on yeast microbiota associated with an Italian traditional sweet-leavened baked good fermentation. Food Research International, 2004, 37, 469-476.	2.9	50
50	Reclassification of Lactobacillus cellobiosus Rogosa et al. 1953 as a later synonym of Lactobacillus fermentum Beijerinck 1901. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 809-812.	0.8	49
51	Identification of a Tyrosine Decarboxylase Gene (<i>tdcA</i>) in <i>Streptococcus thermophilus</i> 1TT45 and Analysis of Its Expression and Tyramine Production in Milk. Applied and Environmental Microbiology, 2011, 77, 1140-1144.	1.4	49
52	Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways. Systematic and Applied Microbiology, 2013, 36, 291-305.	1.2	48
53	Molecular Identification and Quantification of Tetracycline and Erythromycin Resistance Genes in Spanish and Italian Retail Cheeses. BioMed Research International, 2014, 2014, 1-10.	0.9	48
54	Identification and clustering of dairy propionibacteria by RAPD-PCR and CGE-REA methods. Journal of Applied Microbiology, 1998, 85, 956-964.	1.4	47

#	Article	IF	CITATIONS
55	Assessment of Î ² -glucosidase activity in selected wild strains of Oenococcus oeni for malolactic fermentation. Enzyme and Microbial Technology, 2004, 34, 292-296.	1.6	47
56	Whole-Metagenome-Sequencing-Based Community Profiles of Vitis vinifera L. cv. Corvina Berries Withered in Two Post-harvest Conditions. Frontiers in Microbiology, 2016, 7, 937.	1.5	47
57	Reclassification of Pediococcus urinaeequi (ex Mees 1934) Garvie 1988 as Aerococcus urinaeequi comb. nov International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1325-1327.	0.8	46
58	Editorial: Biogenic amines in foods. Frontiers in Microbiology, 2015, 6, 472.	1.5	45
59	Genus- and Species-Specific PCR-Based Detection of Dairy Propionibacteria in Environmental Samples by Using Primers Targeted to the Genes Encoding 16S rRNA. Applied and Environmental Microbiology, 1999, 65, 4241-4244.	1.4	44
60	Impact of maintenance immunosuppressive therapy on the fecal microbiome of renal transplant recipients: Comparison between an everolimus- and a standard tacrolimus-based regimen. PLoS ONE, 2017, 12, e0178228.	1.1	44
61	Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants. Research in Microbiology, 2006, 157, 857-866.	1.0	43
62	Modeling the Aminogenic Potential of <i>Enterococcus faecalis</i> EF37 in Dry Fermented Sausages through Chemical and Molecular Approaches. Applied and Environmental Microbiology, 2008, 74, 2740-2750.	1.4	43
63	Nutritional profile and cooking quality of a new functional pasta naturally enriched in phenolic acids, added with β-glucan and Bacillus coagulans GBI-30, 6086. Journal of Cereal Science, 2015, 65, 260-266.	1.8	43
64	The Capability of Tyramine Production and Correlation between Phenotypic and Genetic Characteristics of Enterococcus faecium and Enterococcus faecalis Strains. Frontiers in Microbiology, 2015, 6, 1371.	1.5	42
65	The Genus Leuconostoc. , 1995, , 235-278.		42
66	Potential of Lactobacillus casei, Culture Permeate, and Lacti Acid To Control Microorganisms in Ready-To-Use Vegetables. Journal of Food Protection, 1997, 60, 1564-1567.	0.8	41
67	Characterization of Streptococcus macedonicus strains isolated from artisanal Italian raw milk cheeses. International Dairy Journal, 2004, 14, 967-976.	1.5	41
68	Rapid identification of Enterococcus durans and Enterococcus hirae by PCR with primers targeted to the ddl genes. Journal of Microbiological Methods, 2001, 47, 35-40.	0.7	40
69	Application of AFLP fingerprint analysis for studying the biodiversity of Streptococcus thermophilus. Journal of Microbiological Methods, 2009, 79, 48-54.	0.7	40
70	Exploring the diversity of a collection of native non-Saccharomyces yeasts to develop co-starter cultures for winemaking. Food Research International, 2019, 122, 432-442.	2.9	40
71	Characterization of Tetracycline-Resistant <i>Streptococcus thermophilus</i> Isolates from Italian Soft Cheeses. Applied and Environmental Microbiology, 2009, 75, 4224-4229.	1.4	39
72	Selection criteria and tools for malolactic starters development: an update. Annals of Microbiology, 2011, 61, 33-39.	1.1	39

5

#	Article	IF	CITATIONS
73	Role of Streptococcus thermophilus PRI60 in histamine accumulation in cheese. International Dairy Journal, 2012, 27, 71-76.	1.5	39
74	Biocide and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from the swine meat chain. Food Microbiology, 2016, 60, 160-164.	2.1	39
75	Phylogenetic analysis of ORF5 and ORF7 sequences of porcine reproductive and respiratory syndrome virus (PRRSV) from PRRS-positive Italian farms: A showcase for PRRSV epidemiology and its consequences on farm managementart. Veterinary Microbiology, 2006, 114, 214-224.	0.8	37
76	Effect of Chemicoâ€Physical Parameters on the Histidine Decarboxylase (HdcA) Enzymatic Activity in <i>Streptococcus thermophilus</i> PRI60. Journal of Food Science, 2012, 77, M231-7.	1.5	37
77	Glucose- and Lipid-Related Biomarkers Are Affected in Healthy Obese or Hyperglycemic Adults Consuming a Whole-Grain Pasta Enriched in Prebiotics and Probiotics: A 12-Week Randomized Controlled Trial. Journal of Nutrition, 2019, 149, 1714-1723.	1.3	37
78	Volatile organic compounds from Starmerella bacillaris to control gray mold on apples and modulate cider aroma profile. Food Microbiology, 2020, 89, 103446.	2.1	37
79	Diversity of Streptococcus thermophilus in bacteriocin production; inhibitory spectrum and occurrence of thermophilin genes. Food Microbiology, 2013, 35, 27-33.	2.1	35
80	Effect of UV-C treatment on the microbial population of white and red wines, as revealed by conventional plating and PMA-qPCR methods. Food Control, 2015, 47, 407-412.	2.8	34
81	The Induction of Noble Rot (Botrytis cinerea) Infection during Postharvest Withering Changes the Metabolome of Grapevine Berries (Vitis vinifera L., cv. Garganega). Frontiers in Plant Science, 2017, 8, 1002.	1.7	34
82	Detection of Staphylococcus aureus and enterotoxin genotype diversity in Monte Veronese, a Protected Designation of Origin Italian cheese. Letters in Applied Microbiology, 2007, 45, 529-534.	1.0	33
83	Control of tyramine and histamine accumulation by lactic acid bacteria using bacteriocin forming lactococci. International Journal of Food Microbiology, 2014, 190, 14-23.	2.1	33
84	Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression. Frontiers in Microbiology, 2015, 6, 259.	1.5	33
85	Microbiological characteristics of fresh tofu produced in small industrial scale and identification of specific spoiling microorganisms (SSO). LWT - Food Science and Technology, 2016, 70, 280-285.	2.5	33
86	Use of a nisin-producing Lactococcus lactis strain, combined with natural antimicrobials, to improve the safety and shelf-life of minimally processed sliced apples. Food Microbiology, 2016, 54, 11-19.	2.1	33
87	Use of response surface methodology to evaluate some variables affecting the growth and acidification characteristics of yoghurt cultures. International Dairy Journal, 1996, 6, 625-636.	1.5	30
88	Remission in Crohn's disease is accompanied by alterations in the gut microbiota and mucins production. Scientific Reports, 2019, 9, 13263.	1.6	30
89	Assessment of microbial diversity of the dominant microbiota in fresh and mature PDO Feta cheese made at three mountainous areas of Greece. LWT - Food Science and Technology, 2016, 72, 525-533.	2.5	28
90	Characterization of the Yeast Population Involved in the Production of a Typical Italian Bread. Journal of Food Science, 2004, 69, 182-186.	1.5	27

#	Article	IF	CITATIONS
91	An assessment of factors characterising the microbiology of Grana Trentino cheese, a Granaâ€ŧype cheese. International Journal of Dairy Technology, 2012, 65, 401-409.	1.3	27
92	Effective identification of Lactobacillus casei group species: genome-based selection of the gene mutL as the target of a novel multiplex PCR assay. Microbiology (United Kingdom), 2017, 163, 950-960.	0.7	27
93	Selection of <i>Botrytis cinerea</i> and <i>Saccharomyces cerevisiae</i> strains for the improvement and valorization of Italian <i>passito</i> style wines. FEMS Yeast Research, 2013, 13, 540-552.	1.1	26
94	Rapid identification and differentiation of Saccharomyces cerevisiae, Saccharomyces bayanus and their hybrids by multiplex PCR. Letters in Applied Microbiology, 2004, 38, 239-244.	1.0	25
95	Evaluation of recA gene as a phylogenetic marker in the classification of dairy propionibacteria. Systematic and Applied Microbiology, 2006, 29, 463-469.	1.2	25
96	Rapid identification and detection of Lactobacillus sanfrancisco in sourdough by species-specific PCR with 16S rRNA-targeted primers. Systematic and Applied Microbiology, 1997, 20, 640-644.	1.2	24
97	Relationships between microbial population dynamics and putrescine and cadaverine accumulation during dry fermented sausage ripening. Journal of Applied Microbiology, 2009, 106, 1397-1407.	1.4	24
98	Lactic Acid Bacteria in Ensiled High-Moisture Corn Grain: Physiological and Genetic Characterization. Systematic and Applied Microbiology, 1984, 5, 534-544.	1.2	22
99	Safety hazards in bacteriocinogenic Staphylococcus strains isolated from goat and sheep milk. Microbial Pathogenesis, 2018, 116, 100-108.	1.3	22
100	The effects of fermented milks with simple and complex probiotic mixtures on the intestinal microbiota and immune response of healthy adults and children. International Dairy Journal, 2007, 17, 1332-1343.	1.5	21
101	Zygosaccharomyces gambellarensis sp. nov., an ascosporogenous yeast isolated from an Italian †̃passito' style wine. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 3084-3088.	0.8	21
102	New insights in thermal resistance of staphylococcal strains belonging to the species Staphylococcus epidermidis, Staphylococcus lugdunensis and Staphylococcus aureus. Food Control, 2015, 50, 605-612.	2.8	20
103	Staphylococcus aureus and Zygosaccharomyces bailii as primary microbial contaminants of a spoiled herbal food supplement and evaluation of their survival during shelf life. Food Microbiology, 2010, 27, 356-362.	2.1	18
104	Induction of grape botrytization during withering affects volatile composition of Recioto di Soave, a "passito―style wine. European Food Research and Technology, 2013, 236, 853-862.	1.6	18
105	Draft Genome Sequence of the Probiotic Yeast Kluyveromyces marxianus <i>fragilis</i> B0399. Genome Announcements, 2016, 4, .	0.8	18
106	New insights into the variability of lactic acid production in Lachancea thermotolerans at the phenotypic and genomic level. Microbiological Research, 2020, 238, 126525.	2.5	18
107	Inkjet Printed Interdigitated Biosensor for Easy and Rapid Detection of Bacteriophage Contamination: a Preliminary Study for Milk Processing Control Applications. Chemosensors, 2019, 7, 8.	1.8	17
108	Tracing <i>Pediococcus acidilactici</i> in ensiled maize by plasmidâ€encoded erythromycin resistance. Journal of Applied Bacteriology, 1987, 63, 305-309.	1.1	16

#	Article	IF	CITATIONS
109	Draft Genome Sequence of Bacillus coagulans GBI-30, 6086, a Widely Used Spore-Forming Probiotic Strain. Genome Announcements, 2014, 2, .	0.8	16
110	Microbiota of high-pressure-processed Serrano ham investigated by culture-dependent and culture-independent methods. International Journal of Food Microbiology, 2017, 241, 298-307.	2.1	16
111	Antimicrobial spectrum activity of bacteriocinogenic Staphylococcus strains isolated from goat and sheep milk. Journal of Dairy Science, 2019, 102, 2928-2940.	1.4	16
112	Bacteriological Survey on Ready-to-use Sliced Carrots. LWT - Food Science and Technology, 1994, 27, 487-490.	2.5	15
113	Growth, biogenic amine production and <i>tyrDC</i> transcription of <i>Enterococcus faecalis</i> in synthetic medium containing defined amino acid concentrations. Journal of Applied Microbiology, 2017, 122, 1078-1091.	1.4	15
114	Genetic and phenotypic strain heterogeneity within a natural population of <i>Oenococcus oeni</i> from Amarone wine. Journal of Applied Microbiology, 2012, 113, 1087-1096.	1.4	14
115	Variability in gene content and expression of the thioredoxin system in Oenococcus oeni. Food Microbiology, 2017, 61, 23-32.	2.1	14
116	Growth modelling of Listeria monocytogenes and Yersinia enterocolitica in food model systems and dairy products. International Journal of Food Microbiology, 1994, 24, 83-92.	2.1	13
117	A survey ofSaccharomyces populations associated with wine fermentations from the Apulia region (South Italy). Annals of Microbiology, 2007, 57, 545-552.	1.1	11
118	The genome of Bifidobacterium pseudocatenulatum IPLA 36007, a human intestinal strain with isoflavone-activation activity. Gut Pathogens, 2014, 6, 31.	1.6	11
119	"Graviera Naxou and Graviera Kritis Greek PDO cheeses: Discrimination based on microbiological and physicochemical criteria and volatile organic compounds profile― Small Ruminant Research, 2016, 136, 161-172.	0.6	11
120	Glutathione production by non-Saccharomyces yeasts and its impact on winemaking: A review. Food Research International, 2022, 156, 111333.	2.9	11
121	Reclassification of Lactobacillus thermotolerans Niamsup et al. 2003 as a later synonym of Lactobacillus ingluviei Baele et al. 2003. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 793-795.	0.8	10
122	Effect of thyme essential oil and Lactococcus lactis CBM21 on the microbiota composition and quality of minimally processed lamb's lettuce. Food Microbiology, 2017, 68, 61-70.	2.1	9
123	Contribution of non― <i>Saccharomyces</i> yeasts to increase glutathione concentration in wine. Australian Journal of Grape and Wine Research, 2021, 27, 290-294.	1.0	9
124	Investigating the glutathione accumulation by non-conventional wine yeasts in optimized growth conditions and multi-starter fermentations. LWT - Food Science and Technology, 2021, 142, 110990.	2.5	9
125	Development of the Specific and Random Amplification (SARA)-PCR for both species identification of enterococci and detection of the vanA gene. Journal of Microbiological Methods, 2001, 43, 233-239.	0.7	8
126	Identification of variable genomic regions related to stress response in Oenococcus oeni. Food Research International, 2017, 102, 625-638.	2.9	8

#	Article	IF	CITATIONS
127	Exploring Antibiotic Resistance Diversity in Leuconostoc spp. by a Genome-Based Approach: Focus on the IsaA Gene. Microorganisms, 2021, 9, 491.	1.6	8
128	Preservation of pears in water in the presence of Sinapis arvensis seeds: A Greek tradition. International Journal of Food Microbiology, 2012, 159, 254-262.	2.1	7
129	Tyrosine decarboxylase activity of Enterococcus mundtii : new insights into phenotypic and genetic aspects. Microbial Biotechnology, 2016, 9, 801-813.	2.0	7
130	Draft Genome Sequence of Three Antibiotic-Resistant Leuconostoc mesenteroides Strains of Dairy Origin. Genome Announcements, 2015, 3, .	0.8	6
131	Editorial: Microbiota of Grapes: Positive and Negative Role on Wine Quality. Frontiers in Microbiology, 2016, 7, 2036.	1.5	6
132	Effects of functional pasta ingredients on different gut microbiota as revealed by TIM-2 in vitro model of the proximal colon. Beneficial Microbes, 2019, 10, 301-313.	1.0	6
133	Partial characterization and plasmid linkage of a nonâ€proteinaceous antimicrobial compound in aLactobacillus caseistrain of vegetable origin. Journal of Applied Microbiology, 1999, 86, 682-688.	1.4	5
134	Unravelling the Impact of Grape Washing, SO2, and Multi-Starter Inoculation in Lab-Scale Vinification Trials of Withered Black Grapes. Fermentation, 2021, 7, 43.	1.4	5
135	Assessing Gut Microbiota in an Infant with Congenital Propionic Acidemia before and after Probiotic Supplementation. Microorganisms, 2021, 9, 2599.	1.6	5
136	Use of Polymerase Chain Reaction to detect Listeria monocytogenes in silages. Biotechnology Letters, 1994, 8, 157-160.	0.5	4
137	The status of the species Lactobacillus rogosae Holdeman and Moore 1974. Request for an Opinion. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1903-1904.	0.8	4
138	Isolation of aminopeptidase N genes of food associated propionibacteria and observation of their transcription in skim milk and acid whey. Antonie Van Leeuwenhoek, 2006, 91, 87-96.	0.7	4
139	Suitability of the Nisin Z-producer Lactococcus lactis subsp. lactis CBM 21 to be Used as an Adjunct Culture for Squacquerone Cheese Production. Animals, 2020, 10, 782.	1.0	4
140	Genomic Characterisation of Starter Cultures. , 0, , 16-38.		3
141	Development and validation of a multiplex PCR-based DNA microarray hybridisation method for detecting bacterial antibiotic resistance genes in cheese. International Dairy Journal, 2011, 21, 149-157.	1.5	3
142	Transcriptional and Metabolic Response of Wine-Related Lactiplantibacillus plantarum to Different Conditions of Aeration and Nitrogen Availability. Fermentation, 2021, 7, 68.	1.4	3
143	Investigating the biotechnological potential of lactic acid bacteria strains isolated from different Algerian dairy and farm sources. Archives of Microbiology, 2022, 204, 220.	1.0	2
144	A Genetic Insight Into Peptide and Amino-Acid Utilization by Propionibacterium freudenreichii LMG 16415. Current Microbiology, 2006, 52, 464-468.	1.0	1

#	Article	IF	CITATIONS
145	Lactic Acid Bacteria: Taxonomy and Biodiversity. , 2022, , 263-274.		1