José A Manso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3624073/publications.pdf

Version: 2024-02-01

623188 525886 14 38 860 27 citations g-index h-index papers 40 40 40 1086 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	PSTPIP1-LYP phosphatase interaction: structural basis and implications for autoinflammatory disorders. Cellular and Molecular Life Sciences, 2022, 79, 131.	2.4	6
2	Critical assessment of protein intrinsic disorder prediction. Nature Methods, 2021, 18, 472-481.	9.0	187
3	DisProt: intrinsic protein disorder annotation in 2020. Nucleic Acids Research, 2020, 48, D269-D276.	6.5	141
4	Integrin $\hat{l}\pm6\hat{l}^24$ Recognition of a Linear Motif of Bullous Pemphigoid Antigen BP230 Controls Its Recruitment to Hemidesmosomes. Structure, 2019, 27, 952-964.e6.	1.6	11
5	Molecular Fingerprints for a Novel Enzyme Family in <i>Actinobacteria</i> with Glucosamine Kinase Activity. MBio, 2019, 10, .	1.8	2
6	Biosynthesis of mycobacterial methylmannose polysaccharides requires a unique $1-\langle i\rangle O\langle i\rangle$ -methyltransferase specific for $3-\langle i\rangle O\langle i\rangle$ -methylated mannosides. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 835-844.	3.3	7
7	The structural characterization of a glucosylglycerate hydrolase provides insights into the molecular mechanism of mycobacterial recovery from nitrogen starvation. IUCrJ, 2019, 6, 572-585.	1.0	16
8	In silico and crystallographic studies identify key structural features of biliverdin $ \hat{X} ^2$ reductase inhibitors having nanomolar potency. Journal of Biological Chemistry, 2018, 293, 5431-5446.	1.6	7
9	Functional and structural characterization of synthetic cardosin B-derived rennet. Applied Microbiology and Biotechnology, 2017, 101, 6951-6968.	1.7	15
10	Purification and Structural Analysis of Plectin and BPAG1e. Methods in Enzymology, 2016, 569, 177-196.	0.4	11
11	The Structure of the Plakin Domain of Plectin Reveals an Extended Rod-like Shape. Journal of Biological Chemistry, 2016, 291, 18643-18662.	1.6	36
12	Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin α6β4. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 969-985.	2.5	38
13	Stability study of Iprodione in alkaline media in the presence of humic acids. Chemosphere, 2013, 92, 1536-1541.	4.2	12
14	Basic hydrolysis of carbofuran in the presence of cyclodextrins. Supramolecular Chemistry, 2012, 24, 399-405.	1.5	7
15	Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions. Chemosphere, 2012, 89, 1267-1271.	4.2	32
16	The reactivity of vinyl compounds as alkylating agents. Monatshefte Fýr Chemie, 2012, 143, 723-727.	0.9	5
17	Degradation of carbofuran derivatives in restricted water environments: Basic hydrolysis in AOT-based microemulsions. Journal of Colloid and Interface Science, 2012, 372, 113-120.	5.0	14
18	Influence Prediction of Small Organic Molecules (Ureas and Thioureas) Upon Electrical Percolation of AOT-Based Microemulsions Using Artificial Neural Networks. Tenside, Surfactants, Detergents, 2012, 49, 316-320.	0.5	11

#	Article	IF	CITATIONS
19	Reactivity of p-nitrostyrene oxide as an alkylating agent. A kinetic approach to biomimetic conditions. Organic and Biomolecular Chemistry, 2011, 9, 7016.	1.5	6
20	Alkylating potential of \hat{l}_{\pm} , \hat{l}_{-}^2 -unsaturated compounds. Organic and Biomolecular Chemistry, 2011, 9, 6226.	1. 5	5
21	N-Alkylamines-Based Micelles Aggregation Number Determination by Fluorescence Techniques. Journal of Solution Chemistry, 2011, 40, 2072-2081.	0.6	4
22	Influence of anionic and nonionic micelles upon hydrolysis of 3â€hydroxyâ€carbofuran. International Journal of Chemical Kinetics, 2011, 43, 402-408.	1.0	20
23	Alkaline Fading of Triarylmethyl Carbocations in Self-Assembly Microheterogeneous Media. Progress in Reaction Kinetics and Mechanism, 2011, 36, 139-165.	1.1	9
24	Reactivity of acrylamide as an alkylating agent: a kinetic approach. Journal of Physical Organic Chemistry, 2010, 23, 171-175.	0.9	17
25	Reactivity of the Mutagen 1,4-Dinitro-2-methylpyrrole as an Alkylating Agent. Journal of Organic Chemistry, 2010, 75, 1444-1449.	1.7	12
26	Alkylating potential of <i>N</i> â€phenylâ€ <i>N</i> â€nitrosourea. Journal of Physical Organic Chemistry, 2009, 22, 386-389.	0.9	5
27	Solvent effects in the decomposition reaction of some products formed by the reaction of sorbic acid with sodium nitrite: 1,4â€dinitroâ€2â€methylpyrrole and ethylnitrolic acid. Journal of Physical Organic Chemistry, 2009, 22, 418-424.	0.9	9
28	Kinetic study of the neutral and base hydrolysis of diketene. Journal of Physical Organic Chemistry, 2009, 22, 438-442.	0.9	7
29	Sorbateâ^'Nitrite Interactions: Acetonitrile Oxide as an Alkylating Agent. Chemical Research in Toxicology, 2009, 22, 1320-1324.	1.7	14
30	Solvent Effects on the Enthalpy and Entropy of \hat{A} Activation for the Hydrolysis of \hat{I}^2 -Lactones. Journal of Solution Chemistry, 2008, 37, 451-457.	0.6	4
31	Sorbic Acid as an Alkylating Agent. Journal of Solution Chemistry, 2008, 37, 459-466.	0.6	15
32	Steric effect in alkylation reactions by <i>N</i> â€alkylâ€ <i>N</i> â€nitrosoureas: a kinetic approach. Journal of Physical Organic Chemistry, 2008, 21, 932-938.	0.9	18
33	Reactivity of Some Products Formed by the Reaction of Sorbic Acid with Sodium Nitrite: Decomposition of 1,4-Dinitro-2-methylpyrrole and Ethylnitrolic Acid. Journal of Agricultural and Food Chemistry, 2008, 56, 11824-11829.	2.4	11
34	Chemical Reactivity and Biological Activity of Diketene. Chemical Research in Toxicology, 2008, 21, 1964-1969.	1.7	24
35	The unusual ability of αâ€angelicalactone to form adducts: A kinetic approach. International Journal of Chemical Kinetics, 2007, 39, 591-594.	1.0	14
36	Alkylating Potential of Potassium Sorbate. Journal of Agricultural and Food Chemistry, 2005, 53, 10244-10247.	2.4	27

#	Article	IF	CITATIONS
37	A Kinetic Approach to the Alkylating Potential of Carcinogenic Lactones. Chemical Research in Toxicology, 2005, 18, 1161-1166.	1.7	41
38	Reactivity of Lactones and GHB Formation. Journal of Organic Chemistry, 2005, 70, 420-426.	1.7	39