Martin R Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3623865/publications.pdf

Version: 2024-02-01

213 papers

19,857 citations

75 h-index 132 g-index

225 all docs 225
docs citations

times ranked

225

21294 citing authors

#	Article	IF	Citations
1	Intravascular imaging assessment of pharmacotherapies targeting atherosclerosis: advantages and limitations in predicting their prognostic implications. Cardiovascular Research, 2023, 119, 121-135.	3.8	7
2	Efficacy and limitations of senolysis in atherosclerosis. Cardiovascular Research, 2022, 118, 1713-1727.	3.8	34
3	Trans-Myocardial Blood Interleukin-6 Levels Relate to Intracoronary Imaging-Defined Features of Plaque Vulnerability and Predict Procedure-Induced Myocardial Infarction. Cardiovascular Revascularization Medicine, 2022, 39, 6-11.	0.8	4
4	Association of Collagen, Elastin, Glycosaminoglycans, and Macrophages With Tissue Ultimate Material Strength and Stretch in Human Thoracic Aortic Aneurysms: A Uniaxial Tension Study. Journal of Biomechanical Engineering, 2022, 144, .	1.3	3
5	Sirtuins in atherosclerosis: guardians of healthspan and therapeutic targets. Nature Reviews Cardiology, 2022, 19, 668-683.	13.7	32
6	Coronary Flow Variations Following Percutaneous Coronary Intervention Affect Diastolic Nonhyperemic Pressure Ratios More Than the Whole Cycle Ratios. Journal of the American Heart Association, 2022, 11, e023554.	3.7	2
7	SIRT6 Protects Smooth Muscle Cells From Senescence and Reduces Atherosclerosis. Circulation Research, 2021, 128, 474-491.	4.5	128
8	Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovascular Research, 2021, 117, 2326-2339.	3.8	172
9	DNA glycosylase Neil3 regulates vascular smooth muscle cell biology during atherosclerosis development. Atherosclerosis, 2021, 324, 123-132.	0.8	11
10	Telomere damage promotes vascular smooth muscle cell senescence and immune cell recruitment after vessel injury. Communications Biology, 2021, 4, 611.	4.4	32
11	GLP-1 vasodilatation in humans with coronary artery disease is not adenosine mediated. BMC Cardiovascular Disorders, 2021, 21, 223.	1.7	3
12	Adenosineâ€Induced Coronary Steal Is Observed in Patients Presenting With STâ€Segment–Elevation Myocardial Infarction. Journal of the American Heart Association, 2021, 10, e019899.	3.7	7
13	Pericoronary and periaortic adipose tissue density are associated with inflammatory disease activity in Takayasu arteritis and atherosclerosis. European Heart Journal Open, 2021, 1, oeab019.	2.3	15
14	Cardiovascular ACE2 receptor expression in patients undergoing heart transplantation. ESC Heart Failure, 2021, 8, 4119-4129.	3.1	7
15	Comparison of plaque distribution and wire-free functional assessment in patients with stable angina and non-ST elevation myocardial infarction: an optical coherence tomography and quantitative flow ratio study. Coronary Artery Disease, 2021, 32, 131-137.	0.7	2
16	High-intensity statin treatment is associated with reduced plaque structural stress and remodelling of artery geometry and plaque architecture. European Heart Journal Open, 2021, 1, .	2.3	3
17	Heterogeneity of Plaque Structural Stress Is Increased in Plaques Leading to MACE. JACC: Cardiovascular Imaging, 2020, 13, 1206-1218.	5.3	40
18	Novel Approach to Imaging Active Takayasu Arteritis Using Somatostatin Receptor Positron Emission Tomography/Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging, 2020, 13, e010389.	2.6	18

#	Article	IF	CITATIONS
19	Cytokine regulation of apoptosis-induced apoptosis and apoptosis-induced cell proliferation in vascular smooth muscle cells. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 648-662.	4.9	20
20	PCSK6-Mediated Regulation of Vascular Remodeling. Circulation Research, 2020, 126, 586-588.	4.5	6
21	Cell surface ILâ€1α trafficking is specifically inhibited by interferonâ€Ĵ³, and associates with the membrane via ILâ€1R2 and GPI anchors. European Journal of Immunology, 2020, 50, 1663-1675.	2.9	11
22	Exploring the relationship between biomechanical stresses and coronary atherosclerosis. Atherosclerosis, 2020, 302, 43-51.	0.8	20
23	Deoxyribonucleic Acid Repair Activity Is Associated with Healed Coronary Plaque Rupture by Optical Coherence Tomography. Journal of Cardiovascular Translational Research, 2019, 12, 608-610.	2.4	1
24	Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration. Nature Biotechnology, 2019, 37, 895-906.	17.5	139
25	Vascular smooth muscle cells in atherosclerosis. Nature Reviews Cardiology, 2019, 16, 727-744.	13.7	628
26	Epigenetic Regulation of Vascular Smooth Muscle Cells by Histone H3 Lysine 9 Dimethylation Attenuates Target Gene-Induction by Inflammatory Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2289-2302.	2.4	27
27	TRAIL-Expressing Monocyte/Macrophages Are Critical for Reducing Inflammation and Atherosclerosis. IScience, 2019, 12, 41-52.	4.1	33
28	DNA Damage and Repair in Patients With Coronary Artery Disease: Correlation With Plaque Morphology Using Optical Coherence Tomography (DECODE Study). Cardiovascular Revascularization Medicine, 2019, 20, 812-818.	0.8	3
29	68Ga-DOTATATE PET Identifies Residual Myocardial Inflammation andÂBone Marrow Activation After Myocardial Infarction. Journal of the American College of Cardiology, 2019, 73, 2489-2491.	2.8	37
30	Glucagon-Like Peptide-1–Mediated Cardioprotection Does Not Reduce RightÂVentricular Stunning and Cumulative Ischemic Dysfunction After Coronary Balloon Occlusion. JACC Basic To Translational Science, 2019, 4, 222-233.	4.1	5
31	The Coagulation and Immune Systems Are Directly Linked through the Activation of Interleukin- $1\hat{l}\pm$ by Thrombin. Immunity, 2019, 50, 1033-1042.e6.	14.3	154
32	Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition. European Heart Journal, 2019, 40, 1411-1422.	2.2	68
33	Vascular Smooth Muscle Cell Plasticity and Autophagy in Dissecting Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1149-1159.	2.4	121
34	Defective Base Excision Repair of Oxidative DNA Damage in Vascular Smooth Muscle Cells Promotes Atherosclerosis. Circulation, 2018, 138, 1446-1462.	1.6	79
35	Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovascular Research, 2018, 114, 622-634.	3.8	356
36	FOXO3a (Forkhead Transcription Factor O Subfamily Member 3a) Links Vascular Smooth Muscle Cell Apoptosis, Matrix Breakdown, Atherosclerosis, and Vascular Remodeling Through a Novel Pathway Involving MMP13 (Matrix Metalloproteinase 13). Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 555-565.	2.4	48

#	Article	IF	CITATIONS
37	Prediction of postpercutaneous coronary intervention myocardial infarction. Coronary Artery Disease, 2018, 29, 246-253.	0.7	2
38	GLPâ€1 Is a Coronary Artery Vasodilator in Humans. Journal of the American Heart Association, 2018, 7, e010321.	3.7	16
39	Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nature Communications, 2018, 9, 4567.	12.8	219
40	Mitochondrial function in thoracic aortic aneurysms. Cardiovascular Research, 2018, 114, 1696-1698.	3.8	13
41	Tissue Inhibitor of Metalloproteinase–3 (TIMP-3) induces FAS dependent apoptosis in human vascular smooth muscle cells. PLoS ONE, 2018, 13, e0195116.	2.5	11
42	Restoring mitochondrial <scp>DNA</scp> copy number preserves mitochondrial function and delays vascular aging in mice. Aging Cell, 2018, 17, e12773.	6.7	90
43	Remote Endothelial Activation Following Myocardial Infarction. Journal of the American College of Cardiology, 2018, 72, 1027-1029.	2.8	0
44	Molecular insights into vascular aging. Aging, 2018, 10, 3647-3649.	3.1	9
45	High-Risk Atherosclerotic Plaque in Aberrant Circumflex Coronary Artery. Journal of Invasive Cardiology, 2018, 30, E26.	0.4	0
46	High-Sensitivity Troponin I Is Associated WithÂHigh-Risk Plaque and MACE in StableÂCoronary Artery Disease. JACC: Cardiovascular Imaging, 2017, 10, 1200-1203.	5.3	11
47	The JCR:LA-cp rat: a novel rodent model of cystic medial necrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H541-H545.	3.2	1
48	Mitochondrial function in human atherosclerotic plaques and effects of atherogenic lipids on vascular smooth muscle cells. Lancet, The, 2017, 389, S82.	13.7	0
49	Midterm Safety and Efficacy of ABSORB Bioresorbable Vascular Scaffold Versus Everolimus-Eluting Metallic Stent. JACC: Cardiovascular Interventions, 2017, 10, 308-310.	2.9	7
50	Detection of Atherosclerotic Inflammation by 68 Ga-DOTATATE PET Compared to [18 F]FDG PET Imaging. Journal of the American College of Cardiology, 2017, 69, 1774-1791.	2.8	321
51	Impact of Fiber Structure on the Material Stability and Rupture Mechanisms of Coronary Atherosclerotic Plaques. Annals of Biomedical Engineering, 2017, 45, 1462-1474.	2.5	21
52	DNA damage-dependent mechanisms of ageing and disease in the macro- and microvasculature. European Journal of Pharmacology, 2017, 816, 116-128.	3.5	20
53	Killing the old: cell senescence in atherosclerosis. Nature Reviews Cardiology, 2017, 14, 8-9.	13.7	20
54	Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2322-2332.	2.4	120

#	Article	IF	Citations
55	Anatomical plaque and vessel characteristics are associated with hemodynamic indices including fractional flow reserve and coronary flow reserve: A prospective exploratory intravascular ultrasound analysis. International Journal of Cardiology, 2017, 248, 92-96.	1.7	14
56	Coronary CT angiography features of ruptured and high-risk atherosclerotic plaques: Correlation with intra-vascular ultrasound. Journal of Cardiovascular Computed Tomography, 2017, 11, 455-461.	1.3	48
57	Plaque Rupture in Coronary Atherosclerosis Is Associated With Increased Plaque Structural Stress. JACC: Cardiovascular Imaging, 2017, 10, 1472-1483.	5.3	69
58	Dâ€Atherosclerotic inflammation imaging using ⁶⁸ ga-dotatate pet vs. ¹⁸ f-fdg pet: a prospective clinical sudy with molecular and histological validation. Heart, 2017, 103, A151.2-A152.	2.9	0
59	Intravascular ultrasound guidance improves clinical outcomes during implantation of both first- and second-generation drug-eluting stents: a meta-analysis. EuroIntervention, 2017, 12, 1632-1642.	3.2	47
60	Optical coherence tomography imaging of coronary atherosclerosis is affected by intraobserver and interobserver variability. Journal of Cardiovascular Medicine, 2016, 17, 368-373.	1.5	8
61	Ageing induced vascular smooth muscle cell senescence in atherosclerosis. Journal of Physiology, 2016, 594, 2115-2124.	2.9	115
62	Percutaneous Coronary Intervention Using Drug-Eluting Stents Versus Coronary Artery Bypass Grafting for Unprotected Left Main Coronary Artery Stenosis. Circulation: Cardiovascular Interventions, 2016, 9, .	3.9	61
63	Replacing Magic Bullets With Beneficial Pleiotropy in Atherosclerosis. Circulation Research, 2016, 119, 1167-1169.	4.5	0
64	Controlling Inflammation Through DNA Damage and Repair. Circulation Research, 2016, 119, 698-700.	4.5	1
65	The vanishing atrial mass. European Heart Journal Cardiovascular Imaging, 2016, 17, 1189-1189.	1.2	1
66	Extensive Proliferation of a Subset of Differentiated, yet Plastic, Medial Vascular Smooth Muscle Cells Contributes to Neointimal Formation in Mouse Injury and Atherosclerosis Models. Circulation Research, 2016, 119, 1313-1323.	4.5	317
67	Embryological Origin of Human Smooth Muscle Cells Influences Their Ability to Support Endothelial Network Formation. Stem Cells Translational Medicine, 2016, 5, 946-959.	3.3	26
68	Assessment and consequences of cell senescence in atherosclerosis. Current Opinion in Lipidology, 2016, 27, 431-438.	2.7	13
69	Geographical miss is associated with vulnerable plaque and increased major adverse cardiovascular events in patients with myocardial infarction. Catheterization and Cardiovascular Interventions, 2016, 88, 340-347.	1.7	25
70	Use of somatostatin receptor PET to differentiate between high-risk and low-risk atherosclerotic lesions: a prospective clinical study. Lancet, The, 2016, 387, S97.	13.7	1
71	Plaque Structural Stress Estimations Improve Prediction of Future Major Adverse Cardiovascular Events After Intracoronary Imaging. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	55
72	The role of mitochondrial DNA damage in the development of atherosclerosis. Free Radical Biology and Medicine, 2016, 100, 223-230.	2.9	68

#	Article	IF	CITATIONS
73	Role of biomechanical forces in the natural history of coronary atherosclerosis. Nature Reviews Cardiology, 2016, 13, 210-220.	13.7	193
74	Vascular Smooth Muscle Cells in Atherosclerosis. Circulation Research, 2016, 118, 692-702.	4.5	1,473
75	DNA Damage and Repair in Vascular Disease. Annual Review of Physiology, 2016, 78, 45-66.	13.1	59
76	Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis. International Journal of Cardiovascular Imaging, 2016, 32, 189-200.	1.5	26
77	Mid-term clinical outcomes of ABSORB bioresorbable vascular scaffold implantation in a real-world population: A single-center experience. Cardiovascular Revascularization Medicine, 2015, 16, 461-464.	0.8	8
78	Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 817-828.	2.4	92
79	Contemporary invasive imaging modalities that identify and risk-stratify coronary plaques at risk of rupture. Expert Review of Cardiovascular Therapy, 2015, 13, 9-13.	1.5	5
80	Hematopoietic IKBKE limits the chronicity of inflammasome priming and metaflammation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 506-511.	7.1	30
81	Akt isoforms in vascular disease. Vascular Pharmacology, 2015, 71, 57-64.	2.1	92
82	LGR5 Activates Noncanonical Wnt Signaling and Inhibits Aldosterone Production in the Human Adrenal. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E836-E844.	3.6	32
83	Vascular Smooth Muscle Cell Senescence Promotes Atherosclerosis and Features of Plaque Vulnerability. Circulation, 2015, 132, 1909-1919.	1.6	250
84	Senescent Vascular Smooth Muscle Cells Drive Inflammation Through an Interleukin-1α–Dependent Senescence-Associated Secretory Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1963-1974.	2.4	211
85	Direct Comparison of Virtual-Histology Intravascular Ultrasound and Optical Coherence Tomography Imaging for Identification of Thin-Cap Fibroatheroma. Circulation: Cardiovascular Imaging, 2015, 8, e003487.	2.6	78
86	Interleukin- $1\hat{l}$ ± Activity in Necrotic Endothelial Cells Is Controlled by Caspase-1 Cleavage of Interleukin-1 Receptor-2. Journal of Biological Chemistry, 2015, 290, 25188-25196.	3.4	23
87	Identifying active vascular microcalcification by 18F-sodium fluoride positron emission tomography. Nature Communications, 2015, 6, 7495.	12.8	385
88	Effects of DNA Damage in Smooth Muscle Cells in Atherosclerosis. Circulation Research, 2015, 116, 816-826.	4.5	82
89	Quantification of Apoptosis in Mouse Atherosclerotic Lesions. Methods in Molecular Biology, 2015, 1339, 191-199.	0.9	4
90	Cholesterol crystals identified using optical coherence tomography and virtual histology intravascular ultrasound. EuroIntervention, 2015, 11, e1-e1.	3.2	9

#	Article	IF	Citations
91	Abstract 17766: PET Imaging With 68Ga-DOTATATE Can Detect High-risk Carotid and Coronary Atherosclerotic Lesions. Circulation, 2015, 132, .	1.6	1
92	The CCR5 chemokine receptor mediates vasoconstriction and stimulates intimal hyperplasia in human vessels in vitro. Cardiovascular Research, 2014, 101, 513-521.	3.8	21
93	Coronary Plaque Structural Stress Is Associated With Plaque Composition and Subtype and Higher in Acute Coronary Syndrome. Circulation: Cardiovascular Imaging, 2014, 7, 461-470.	2.6	78
94	Response to Letter Regarding Article, "Mitochondrial DNA Damage Can Promote Atherosclerosis Independently of Reactive Oxygen Species Through Effects on Smooth Muscle Cells and Monocytes and Correlates With Higher-Risk Plaques in Humans― Circulation, 2014, 129, e408.	1.6	2
95	Akt1 Regulates Vascular Smooth Muscle Cell Apoptosis Through FoxO3a and Apaf1 and Protects Against Arterial Remodeling and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2421-2428.	2.4	50
96	Dual-energy computed tomography imaging to determine atherosclerotic plaque composition: A prospective study with tissue validation. Journal of Cardiovascular Computed Tomography, 2014, 8, 230-237.	1.3	64
97	Disturbed Flow Promotes Endothelial Senescence via a p53-Dependent Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 985-995.	2.4	174
98	Mitochondrial DNA damage and atherosclerosis. Trends in Endocrinology and Metabolism, 2014, 25, 481-487.	7.1	99
99	Expansion and malapposition characteristics after bioresorbable vascular scaffold implantation. Catheterization and Cardiovascular Interventions, 2014, 84, 37-45.	1.7	52
100	The influence of computational strategy on prediction of mechanical stress in carotid atherosclerotic plaques: Comparison of 2D structure-only, 3D structure-only, one-way and fully coupled fluid-structure interaction analyses. Journal of Biomechanics, 2014, 47, 1465-1471.	2.1	35
101	Intracellular Interleukin-1 Receptor 2 Binding Prevents Cleavage and Activity of Interleukin-1α, Controlling Necrosis-Induced Sterile Inflammation. Immunity, 2013, 38, 285-295.	14.3	172
102	The epigenetic phenotypic switch of vascular smooth muscle cells involved in atherosclerosis. Lancet, The, 2013, 381, S34.	13.7	5
103	Mitochondrial DNA damage promotes atherosclerosis and is associated with vulnerable plaque. Lancet, The, 2013, 381, S117.	13.7	4
104	Myocardin Regulates Vascular Response to Injury Through miR-24/-29a and Platelet-Derived Growth Factor Receptor-Î ² . Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2355-2365.	2.4	46
105	Atherosclerotic Plaque Composition and Classification Identified by Coronary Computed Tomography. Circulation: Cardiovascular Imaging, 2013, 6, 655-664.	2.6	103
106	Mitochondrial DNA Damage Can Promote Atherosclerosis Independently of Reactive Oxygen Species Through Effects on Smooth Muscle Cells and Monocytes and Correlates With Higher-Risk Plaques in Humans. Circulation, 2013, 128, 702-712.	1.6	218
107	Vascular Smooth Muscle Cell Sirtuin 1 Protects Against DNA Damage and Inhibits Atherosclerosis. Circulation, 2013, 127, 386-396.	1.6	221
108	Abstract 293: Embryological Origin of Human Smooth Muscle Cells Influences Their Ability to Support Vasculogenesis Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	2.4	0

#	Article	IF	CITATIONS
109	Radiofrequency intravascular ultrasound and detection of the vulnerable plaque. British Journal of Hospital Medicine (London, England: 2005), 2012, 73, 682-686.	0.5	O
110	Poor maternal nutrition programmes a pro-atherosclerotic phenotype in ApoEâ^'/â^' mice. Clinical Science, 2012, 123, 251-257.	4.3	13
111	Mitochondria in vascular disease. Cardiovascular Research, 2012, 95, 173-182.	3.8	130
112	The Methyl Xanthine Caffeine Inhibits DNA Damage Signaling and Reactive Species and Reduces Atherosclerosis in ApoE ^{â^'/â^'} Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2461-2467.	2.4	25
113	Selective Modulation of Nuclear Factor of Activated T-Cell Function in Restenosis by a Potent Bipartite Peptide Inhibitor. Circulation Research, 2012, 110, 200-210.	4.5	7
114	Identification of Coronary Plaque Sub-Types Using Virtual Histology Intravascular Ultrasound Is Affected by Inter-Observer Variability and Differences in Plaque Definitions. Circulation: Cardiovascular Imaging, 2012, 5, 86-93.	2.6	27
115	Cell death and survival signalling in the cardiovascular system. Frontiers in Bioscience - Landmark, 2012, 17, 248.	3.0	22
116	Aging and Atherosclerosis. Circulation Research, 2012, 111, 245-259.	4.5	676
117	Nutrient deprivation regulates DNA damage repair in cardiomyocytes <i>via</i> loss of the baseâ€excision repair enzyme OGG1. FASEB Journal, 2012, 26, 2117-2124.	0.5	55
118	The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/–/ApoE–/– mice. Free Radical Biology and Medicine, 2012, 52, 841-849.	2.9	154
119	Signalling from dead cells drives inflammation and vessel remodelling. Vascular Pharmacology, 2012, 56, 187-192.	2.1	24
120	Microcalcification Acts as a Stress and Stretch Amplifier in the Coronary Atherosclerotic Plaque Affecting Its Vulnerability: An IVUS-Based Finite Element Study. , 2012, , .		0
121	Association Between IVUS Findings and Adverse Outcomes in Patients With Coronary Artery Disease. JACC: Cardiovascular Imaging, 2011, 4, 894-901.	5.3	435
122	Impact of cellular senescence signature on ageing research. Ageing Research Reviews, 2011, 10, 146-152.	10.9	233
123	Smooth Muscle Cell Apoptosis Promotes Vessel Remodeling and Repair via Activation of Cell Migration, Proliferation, and Collagen Synthesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2402-2409.	2.4	61
124	Role of DNA damage in atherosclerosisâ€"Bystander or participant?. Biochemical Pharmacology, 2011, 82, 693-700.	4.4	50
125	TNF-related apoptosis-inducing ligand (TRAIL) protects against diabetes and atherosclerosis in Apoe $\hat{a}^{"}/\hat{a}^{"}$ mice. Diabetologia, 2011, 54, 3157-3167.	6.3	102
126	Bone Marrow–Derived Smooth Muscle–Like Cells Are Infrequent in Advanced Primary Atherosclerotic Plaques but Promote Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1291-1299.	2.4	58

#	Article	IF	CITATIONS
127	Leukocyte Telomere Length Is Associated With High-Risk Plaques on Virtual Histology Intravascular Ultrasound and Increased Proinflammatory Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2157-2164.	2.4	68
128	Distinct Epigenomic Features in End-Stage Failing Human Hearts. Circulation, 2011, 124, 2411-2422.	1.6	245
129	Cell Death in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2779-2780.	2.4	8
130	PKB/Akt activation inhibits p53â€mediated HIF1A degradation that is independent of MDM2. Journal of Cellular Physiology, 2010, 222, 635-639.	4.1	20
131	Life and death in the atherosclerotic plaque. Current Opinion in Lipidology, 2010, 21, 422-426.	2.7	11
132	Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated. BMC Genomics, 2010, 11, 519.	2.8	93
133	Progenitor cell-derived smooth muscle cells in vascular disease. Biochemical Pharmacology, 2010, 79, 1706-1713.	4.4	60
134	Differential DNA Methylation Correlates with Differential Expression of Angiogenic Factors in Human Heart Failure. PLoS ONE, 2010, 5, e8564.	2.5	182
135	DNA Damage Links Mitochondrial Dysfunction to Atherosclerosis and the Metabolic Syndrome. Circulation Research, 2010, 107, 1021-1031.	4.5	199
136	TRAIL Promotes VSMC Proliferation and Neointima Formation in a FGF-2–, Sp1 Phosphorylation–, and NFκB-Dependent Manner. Circulation Research, 2010, 106, 1061-1071.	4.5	72
137	Nuclear Factor-ΰΒ–Mediated Regulation of Telomerase. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 2327-2328.	2.4	7
138	Vascular Smooth Muscle Cell Apoptosis Induces Interleukin-1–Directed Inflammation. Circulation Research, 2010, 106, 363-372.	4.5	205
139	High-throughput sequencing identifies STAT3 as the DNA-associated factor for p53 - NF-kappaB - complex-dependent gene expression in human heart failure. Genome Medicine, 2010, 2, 37.	8.2	32
140	Oxidative Stress in Vascular Disease. , 2010, , 211-235.		3
141	Cause or Consequence. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 153-155.	2.4	23
142	Restenosis Revisited. Circulation Research, 2009, 104, 823-825.	4.5	7
143	Role of Fas/Fas-L in Vascular Cell Apoptosis. Journal of Cardiovascular Pharmacology, 2009, 53, 100-108.	1.9	31
144	Ageing and atherosclerosis: Mechanisms and therapeutic options. Biochemical Pharmacology, 2008, 75, 1251-1261.	4.4	40

#	Article	IF	Citations
145	Expression, regulation and function of trail in atherosclerosis. Biochemical Pharmacology, 2008, 75, 1441-1450.	4.4	71
146	Akt Regulates the Survival of Vascular Smooth Muscle Cells via Inhibition of FoxO3a and GSK3. Journal of Biological Chemistry, 2008, 283, 19739-19747.	3.4	74
147	TRAIL Stimulates Proliferation of Vascular Smooth Muscle Cells via Activation of NF-κB and Induction of Insulin-like Growth Factor-1 Receptor. Journal of Biological Chemistry, 2008, 283, 7754-7762.	3.4	83
148	Death Receptors and Their Ligands in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1694-1702.	2.4	60
149	Statins Use a Novel Nijmegen Breakage Syndrome-1–Dependent Pathway to Accelerate DNA Repair in Vascular Smooth Muscle Cells. Circulation Research, 2008, 103, 717-725.	4.5	114
150	Chronic Apoptosis of Vascular Smooth Muscle Cells Accelerates Atherosclerosis and Promotes Calcification and Medial Degeneration. Circulation Research, 2008, 102, 1529-1538.	4.5	322
151	Vascular pathology as a result of drug-eluting stents. Heart, 2007, 93, 895-896.	2.9	2
152	Foxing Smooth Muscle Cells. Circulation Research, 2007, 100, 302-304.	4.5	11
153	Cell death in the cardiovascular system. Heart, 2007, 93, 659-664.	2.9	55
154	Ubiquitination and Degradation of the Anti-apoptotic Protein ARC by MDM2. Journal of Biological Chemistry, 2007, 282, 5529-5535.	3.4	70
155	Assessment of Unstable Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 714-720.	2.4	111
156	Regulation of p53 tetramerization and nuclear export by ARC. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20826-20831.	7.1	100
157	Monocyte/Macrophage Suppression in CD11b Diphtheria Toxin Receptor Transgenic Mice Differentially Affects Atherogenesis and Established Plaques. Circulation Research, 2007, 100, 884-893.	4.5	228
158	Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment. Biochemical Journal, 2007, 407, 79-87.	3.7	50
159	Monocyte/macrophage suppression differentially effects atherogenesis and established plaques. Atherosclerosis, 2007, 193, S4-S5.	0.8	0
160	DNA damage, p53, apoptosis and vascular disease. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 621, 75-86.	1.0	90
161	Interferon- \hat{l}^3 Induces Fas Trafficking and Sensitization to Apoptosis in Vascular Smooth Muscle Cells via a Pl3K- and Akt-Dependent Mechanism. American Journal of Pathology, 2006, 168, 2054-2063.	3.8	86
162	Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nature Medicine, 2006, 12, 1075-1080.	30.7	584

#	Article	lF	CITATIONS
163	Heme oxygenase-1 gene transfer inhibits angiotensin II-mediated rat cardiac myocyte apoptosis but not hypertrophy. Journal of Cellular Physiology, 2006, 209, 1-7.	4.1	27
164	Defining the Role of Vascular Smooth Muscle Cell Apoptosis in Atherosclerosis. Cell Cycle, 2006, 5, 2329-2331.	2.6	36
165	The Emerging Role of Vascular Smooth Muscle Cell Apoptosis in Atherosclerosis and Plaque Stability. American Journal of Nephrology, 2006, 26, 531-535.	3.1	98
166	DNA damage and repair in atherosclerosis. Cardiovascular Research, 2006, 71, 259-268.	3.8	117
167	Vascular Smooth Muscle Cells Undergo Telomere-Based Senescence in Human Atherosclerosis. Circulation Research, 2006, 99, 156-164.	4.5	541
168	Vascular smooth muscle cell senescence in atherosclerosis. Cardiovascular Research, 2006, 72, 9-17.	3.8	159
169	The Role of p53 in Atherosclerosis. Cell Cycle, 2006, 5, 1907-1909.	2.6	68
170	Endothelin-mediated vasoconstriction in early atherosclerosis is markedly increased in ApoE-/- mouse but prevented by atorvastatin. Experimental Biology and Medicine, 2006, 231, 806-12.	2.4	8
171	Apoptosis in the cardiovascular system: incidence, regulation, and therapeutic options., 2005,, 156-187.		0
172	Rapamycin inhibits human in stent restenosis vascular smooth muscle cells independently of pRB phosphorylation and p53. Cardiovascular Research, 2005, 66, 601-610.	3.8	29
173	Endogenous p53 Protects Vascular Smooth Muscle Cells From Apoptosis and Reduces Atherosclerosis in ApoE Knockout Mice. Circulation Research, 2005, 96, 667-674.	4.5	160
174	Role of apoptosis in atherosclerosis and its therapeutic implications. Clinical Science, 2004, 107, 343-354.	4.3	198
175	[3H]-thymidine labelling of DNA triggers apoptosis potentiated by E1A-adenoviral protein. Apoptosis: an International Journal on Programmed Cell Death, 2003, 8, 199-208.	4.9	9
176	IN-STENT STENOSIS: PATHOLOGY AND IMPLICATIONS FOR THE DEVELOPMENT OF DRUG ELUTING STENTS. British Heart Journal, 2003, 89, 218-224.	2.1	169
177	Tumor Necrosis Factor-α Promotes Macrophage-Induced Vascular Smooth Muscle Cell Apoptosis by Direct and Autocrine Mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 1553-1558.	2.4	169
178	Differential cyclin E expression in human in-stent stenosis smooth muscle cells identifies targets for selective anti-restenosis therapy. Cardiovascular Research, 2003, 60, 673-683.	3.8	31
179	Apoptotic cell death in atherosclerosis. Current Opinion in Lipidology, 2003, 14, 469-475.	2.7	169
180	Proteome Analysis and Functional Expression Identify Mortalin as an Antiapoptotic Gene Induced by Elevation of $[Na +]$ i $/[K +]$ i Ratio in Cultured Vascular Smooth Muscle Cells. Circulation Research, 2002, 91, 915-922.	4.5	94

#	Article	IF	Citations
181	Tissue Inhibitor of Metalloproteinase-3 Induces a Fas-associated Death Domain-dependent Type II Apoptotic Pathway. Journal of Biological Chemistry, 2002, 277, 13787-13795.	3.4	126
182	Breaking the Plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 713-714.	2.4	24
183	Human Vascular Smooth Muscle Cells From Restenosis or In-Stent Stenosis Sites Demonstrate Enhanced Responses to p53. Circulation Research, 2002, 90, 398-404.	4.5	35
184	Differential Gene Expression in Vascular Smooth Muscle Cells in Primary Atherosclerosis and In Stent Stenosis in Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 2030-2036.	2.4	51
185	APOPTOSIS IN THE CARDIOVASCULAR SYSTEM. British Heart Journal, 2002, 87, 480-487.	2.1	103
186	Human Macrophage-Induced Vascular Smooth Muscle Cell Apoptosis Requires NO Enhancement of Fas/Fas-L Interactions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1624-1630.	2.4	97
187	The regulation of vascular smooth muscle cell apoptosis. , 2002, , 114-128.		0
188	APOPTOTIC PROTEINS. Cardiology Clinics, 2001, 19, 75-89.	2.2	6
189	Mechanisms of angioplasty and stent restenosis: implications for design of rational therapy. , 2001, 91, 149-166.		143
190	Human Blood-Derived Macrophages Induce Apoptosis in Human Plaque-Derived Vascular Smooth Muscle Cells by Fas-Ligand/Fas Interactions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1402-1407.	2.4	130
191	Reactive Oxygen Species and Death. Circulation Research, 2001, 88, 648-650.	4.5	90
192	New insights into atherosclerotic plaque rupture. Postgraduate Medical Journal, 2001, 77, 94-98.	1.8	36
193	The regulation of vascular smooth muscle cell apoptosis. Cardiovascular Research, 2000, 45, 747-755.	3.8	72
194	Role of Pump Prime in the Etiology and Pathogenesis of Cardiopulmonary Bypass–associated Acidosis. Anesthesiology, 2000, 93, 1170-1173.	2.5	198
195	Localization of the Death Domain of Tissue Inhibitor of Metalloproteinase-3 to the N Terminus. Journal of Biological Chemistry, 2000, 275, 41358-41363.	3.4	112
196	Sensitivity to Fas-Mediated Apoptosis Is Determined Below Receptor Level in Human Vascular Smooth Muscle Cells. Circulation Research, 2000, 86, 1038-1046.	4.5	58
197	Apoptosis Regulates Human Vascular Calcification In Vitro. Circulation Research, 2000, 87, 1055-1062.	4.5	648
198	Protection Against Necrosis but Not Apoptosis by Heat-Stress Proteins in Vascular Smooth Muscle Cells. Hypertension, 1999, 33, 906-913.	2.7	59

#	Article	IF	CITATIONS
199	cdc25A Is Necessary but Not Sufficient for Optimal c- <i>myc–</i> Induced Apoptosis and Cell Proliferation of Vascular Smooth Muscle Cells. Circulation Research, 1999, 84, 820-830.	4.5	21
200	Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovascular Research, 1999, 41, 361-368.	3.8	238
201	Discussion. Biochemical Pharmacology, 1999, 58, 1089-1095.	4.4	47
202	Apoptosis of vascular smooth muscle cells in atherosclerosis. Atherosclerosis, 1998, 138, 3-9.	0.8	95
203	Cell Surface Trafficking of Fas: A Rapid Mechanism of p53-Mediated Apoptosis. , 1998, 282, 290-293.		632
204	Cooperative Interactions Between RB and p53 Regulate Cell Proliferation, Cell Senescence, and Apoptosis in Human Vascular Smooth Muscle Cells From Atherosclerotic Plaques. Circulation Research, 1998, 82, 704-712.	4.5	177
205	Apoptosis in vascular disease. Transplant Immunology, 1997, 5, 184-188.	1.2	12
206	Thrombin Generation by Apoptotic Vascular Smooth Muscle Cells. Blood, 1997, 89, 4378-4384.	1.4	140
207	Increased Sensitivity of Human Vascular Smooth Muscle Cells From Atherosclerotic Plaques to p53-Mediated Apoptosis. Circulation Research, 1997, 81, 591-599.	4.5	95
208	Is vascular smooth muscle cell proliferation beneficial?. Lancet, The, 1996, 347, 305-307.	13.7	118
209	Cell death in atherosclerotic plaques. Current Opinion in Lipidology, 1996, 7, 324-329.	2.7	84
210	Antisense Therapy for Angioplasty Restenosis. Circulation, 1995, 92, 1981-1993.	1.6	76
211	Apoptosis of Rat Vascular Smooth Muscle Cells Is Regulated by p53-Dependent and -Independent Pathways. Circulation Research, 1995, 77, 266-273.	4.5	117
212	Cell Death in the Cardiovascular System. , 0, , 295-312.		0
213	Plaque Structural Stress: Detection, Determinants and Role in Atherosclerotic Plaque Rupture and Progression. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	3