Hsien-Yung Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3623470/publications.pdf

Version: 2024-02-01

840776 794594 22 406 11 19 citations h-index g-index papers 23 23 23 891 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrating research using animalâ€borne telemetry with the needs of conservation management. Journal of Applied Ecology, 2017, 54, 423-429.	4.0	106
2	Evaluating the benefits and risks of social media for wildlife conservation. Facets, 2022, 7, 360-397.	2.4	34
3	A guide to modelling priorities for managing landâ€based impacts on coastal ecosystems. Journal of Applied Ecology, 2019, 56, 1106-1116.	4.0	28
4	Avoiding wasted research resources in conservation science. Conservation Science and Practice, 2021, 3, e329.	2.0	28
5	Ontogenetic vertical migration of grenadiers revealed by otolith microstructures and stable isotopic composition. Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 61, 123-130.	1.4	24
6	Potential changes to the biology and challenges to the management of invasive sea lamprey <i>Petromyzon marinus</i> in the Laurentian Great Lakes due to climate change. Global Change Biology, 2020, 26, 1118-1137.	9.5	22
7	On the conservation value of historic canals for aquatic ecosystems. Biological Conservation, 2020, 251, 108764.	4.1	17
8	Reach and messages of the world's largest ivory burn. Conservation Biology, 2018, 32, 765-773.	4.7	15
9	Global assessment of marine and freshwater recreational fish reveals mismatch in climate change vulnerability and conservation effort. Global Change Biology, 2021, 27, 4799-4824.	9.5	15
10	Impacts of fishing, river flow and connectivity loss on the conservation of a migratory fish population. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 45-54.	2.0	14
11	Climate change decouples marine and freshwater habitats of a threatened migratory fish. Diversity and Distributions, 2017, 23, 751-760.	4.1	13
12	Integrating season-specific needs of migratory and resident birds in conservation planning. Biological Conservation, 2020, 252, 108826.	4.1	13
13	Opportunities for the conservation of migratory birds to benefit threatened resident vertebrates in the Neotropics. Journal of Applied Ecology, 2022, 59, 653-663.	4.0	12
14	Three lessons conservation science can learn from the COVIDâ€19 pandemic. Conservation Biology, 2020, 34, 1331-1332.	4.7	11
15	The application of decision support tools and the influence of local data in prioritizing barrier removal in lower Michigan, USA. Journal of Great Lakes Research, 2019, 45, 360-370.	1.9	10
16	How do migratory fish populations respond to barrier removal in spawning and nursery grounds?. Theoretical Ecology, 2019, 12, 379-390.	1.0	9
17	Using community science data to help identify threatened species occurrences outside of known ranges. Biological Conservation, 2022, 268, 109523.	4.1	9
18	Impact of anthropogenic disturbances on a diverse riverine fish assemblage in Fiji predicted by functional traits. Freshwater Biology, 2017, 62, 1422-1432.	2.4	8

#	Article	lF	CITATION
19	Using Structured Decision Making to Overcome Scale Mismatch Challenges in Barrier Removal for Watershed Restoration. Fisheries, 2019, 44, 545-550.	0.8	8
20	Tradeâ€offs among road–stream crossing upgrade prioritizations based on connectivity restoration and erosion risk control. River Research and Applications, 2020, 36, 371-382.	1.7	5
21	Effects of short-term decomposition on isotope values of fish tissues under natural conditions. Aquatic Ecology, 2022, 56, 173-181.	1.5	3
22	An assessment tool for estimating effects of entrainment at hydropower facilities on adfluvial fish populations. Environment Systems and Decisions, 2022, 42, 556-571.	3.4	1