Rasmus Ã~stergaard Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/362319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physical activity through social prescribing: An interviewâ€based study of Danish general practitioners' opinions. Health and Social Care in the Community, 2022, 30, 1969-1978.	1.6	4
2	Translation and Cross-Cultural Adaptation of the Exercise Adherence Rating Scale (EARS) into Danish. Translational Sports Medicine, 2022, 2022, 1-8.	1.1	1
3	Global developments in social prescribing. BMJ Global Health, 2022, 7, e008524.	4.7	74
4	Methods matter: instrumental variable analysis may be a complementary approach to intention-to-treat analysis and as treated analysis when analysing data from sports injury trials. British Journal of Sports Medicine, 2021, 55, bjsports-2020-102155.	6.7	26
5	CHecklist for statistical Assessment of Medical Papers: the CHAMP statement. British Journal of Sports Medicine, 2021, 55, 1002-1003.	6.7	39
6	A CHecklist for statistical Assessment of Medical Papers (the CHAMP statement): explanation and elaboration. British Journal of Sports Medicine, 2021, 55, 1009-1017.	6.7	90
7	How Precisely Can Easily Accessible Variables Predict Achilles and Patellar Tendon Forces during Running?. Sensors, 2021, 21, 7418.	3.8	5
8	What proportion of athletes sustained an injury during a prospective study? Censored observations matter. British Journal of Sports Medicine, 2020, 54, 70-71.	6.7	7
9	Randomised controlled trials (RCTs) in sports injury research: authors—please report the compliance with the intervention. British Journal of Sports Medicine, 2020, 54, 51-57.	6.7	21
10	How Has Workload Been Defined and How Many Workload-Related Exposures to Injury Are Included in Published Sports Injury Articles? A Scoping Review. Journal of Orthopaedic and Sports Physical Therapy, 2020, 50, 538-548.	3.5	13
11	Predicting cumulative load during running using fieldâ€based measures. Scandinavian Journal of Medicine and Science in Sports, 2020, 30, 2399-2407.	2.9	13
12	Methods matter and the †too much, too soon' theory (part 2): what is the goal of your sports injury research? Are you describing, predicting or drawing a causal inference?. British Journal of Sports Medicine, 2020, 54, 1307-1309.	6.7	9
13	Statement on Methods in Sport Injury Research From the First METHODS MATTER Meeting, Copenhagen, 2019. Journal of Orthopaedic and Sports Physical Therapy, 2020, 50, 226-233.	3.5	17
14	Statement on methods in sport injury research from the 1st METHODS MATTER Meeting, Copenhagen, 2019. British Journal of Sports Medicine, 2020, 54, 941-941.	6.7	16
15	Methods matter: exploring the â€~too much, too soon' theory, part 1: causal questions in sports injury research. British Journal of Sports Medicine, 2020, 54, 1119-1122.	6.7	13
16	Knee Injuries in Normal-Weight, Overweight, and Obese Runners: Does Body Mass Index Matter?. Journal of Orthopaedic and Sports Physical Therapy, 2020, 50, 397-401.	3.5	0
17	Diet quality is not associated with late-onset multiple sclerosis risk– A Danish Cohort Study. Multiple Sclerosis and Related Disorders, 2020, 40, 101968.	2.0	10
18	Running shoes, pronation, and injuries: do beliefs of injury risk factors among running shoe salespersons and physiotherapy students align with current aetiology frameworks?. Footwear Science, 2020, 12, 101-111.	2.1	7

#	Article	IF	CITATIONS
19	Methods matter: population attributable fraction (PAF) in sport and exercise medicine. British Journal of Sports Medicine, 2020, 54, 1049-1054.	6.7	17
20	Improved reporting of overuse injuries and health problems in sport: an update of the Oslo Sport Trauma Research Center questionnaires. British Journal of Sports Medicine, 2020, 54, 390-396.	6.7	102
21	Associations between biomechanical and clinical/anthropometrical factors and running-related injuries among recreational runners: a 52-week prospective cohort study. Injury Epidemiology, 2020, 7, 10.	1.8	10
22	Towards a complex systems approach in sports injury research: simulating running-related injury development with agent-based modelling. British Journal of Sports Medicine, 2019, 53, 560-569.	6.7	49
23	The Carmin-RUNSAFE Running Health Study on the aetiology of running-related injuries: rationale and design of an 18-month prospective cohort study including runners worldwide. BMJ Open, 2019, 9, e032627.	1.9	9
24	ProjectRun21: Do running experience and running pace influence the risk of running injury—A 14-week prospective cohort study. Journal of Science and Medicine in Sport, 2019, 22, 281-287.	1.3	13
25	Time-to-event analysis for sports injury research part 1: time-varying exposures. British Journal of Sports Medicine, 2019, 53, 61-68.	6.7	32
26	Computational methods to model complex systems in sports injury research: agent-based modelling (ABM) and systems dynamics (SD) modelling. British Journal of Sports Medicine, 2019, 53, 1507-1510.	6.7	16
27	In pursuit of the â€~Unbreakable' Athlete: what is the role of moderating factors and circular causation?. British Journal of Sports Medicine, 2019, 53, 394-395.	6.7	19
28	Time-to-event analysis for sports injury research part 2: time-varying outcomes. British Journal of Sports Medicine, 2019, 53, 70-78.	6.7	42
29	The Association Between Changes in Weekly Running Distance and Running–Related Injury: Preparing for a Half Marathon. Journal of Orthopaedic and Sports Physical Therapy, 2019, 49, 230-238.	3.5	16
30	Changes in the running-related injury incidence rate ratio in a 1000-km explorative prospective cohort study involving two unspecific shoe changes. Footwear Science, 2019, 11, 63-70.	2.1	3
31	Are prevalence measures better than incidence measures in sports injury research?. British Journal of Sports Medicine, 2019, 53, 396-397.	6.7	20
32	Picking the right tools for the job: opening up the statistical toolkit to build a compelling case in sport and exercise medicine research. British Journal of Sports Medicine, 2019, 53, 987-988.	6.7	1
33	The inter- and intrarater reliability and agreement for field-based assessment of scapular control, shoulder range of motion, and shoulder isometric strength in elite adolescent athletes. Physical Therapy in Sport, 2018, 32, 212-220.	1.9	19
34	Run Clever – No difference in risk of injury when comparing progression in running volume and running intensity in recreational runners: A randomised trial. BMJ Open Sport and Exercise Medicine, 2018, 4, e000333.	2.9	19
35	Seven sins when interpreting statistics in sports injury science. British Journal of Sports Medicine, 2018, 52, 1410-1412.	6.7	8
36	Injury prevalence across sports: a descriptive analysis on a representative sample of the Danish population. Injury Epidemiology, 2018, 5, 6.	1.8	29

#	Article	IF	CITATIONS
37	The association between eccentric hip abduction strength and hip and knee angular movements in recreational male runners: An explorative study. Scandinavian Journal of Medicine and Science in Sports, 2018, 28, 473-478.	2.9	11
38	Training load and structure-specific load: applications for sport injury causality and data analyses. British Journal of Sports Medicine, 2018, 52, 1016-1017.	6.7	60
39	<i>BJSM</i> educational editorials: methods matter. British Journal of Sports Medicine, 2018, 52, 1159-1160.	6.7	15
40	Diagnoses and time to recovery among injured recreational runners in the RUN CLEVER trial. PLoS ONE, 2018, 13, e0204742.	2.5	31
41	How (not) to interpret a non-causal association in sports injury science. Physical Therapy in Sport, 2018, 32, 121-125.	1.9	6
42	How Do Novice Runners With Different Body Mass Indexes Begin a Self-chosen Running Regime?. Journal of Orthopaedic and Sports Physical Therapy, 2018, 48, 873-877.	3.5	3
43	Study protocol of a 52-week Prospective Running INjury study in Gothenburg (SPRING). BMJ Open Sport and Exercise Medicine, 2018, 4, e000394.	2.9	12
44	Exercise addiction is associated with emotional distress in injured and non-injured regular exercisers. Addictive Behaviors Reports, 2018, 8, 33-39.	1.9	30
45	IS THERE EVIDENCE FOR AN ASSOCIATION BETWEEN CHANGES IN TRAINING LOAD AND RUNNING-RELATED INJURIES? A SYSTEMATIC REVIEW. International Journal of Sports Physical Therapy, 2018, 13, 931-942.	1.3	45
46	THE START-TO-RUN DISTANCE AND RUNNING-RELATED INJURY AMONG OBESE NOVICE RUNNERS: A RANDOMIZED TRIAL. International Journal of Sports Physical Therapy, 2018, 13, 943-955.	1.3	10
47	THE START-TO-RUN DISTANCE AND RUNNING-RELATED INJURY AMONG OBESE NOVICE RUNNERS: A RANDOMIZED TRIAL. International Journal of Sports Physical Therapy, 2018, 13, 943-955.	1.3	1
48	IS THERE EVIDENCE FOR AN ASSOCIATION BETWEEN CHANGES IN TRAINING LOAD AND RUNNING-RELATED INJURIES? A SYSTEMATIC REVIEW. International Journal of Sports Physical Therapy, 2018, 13, 931-942.	1.3	18
49	THE INFLUENCE OF THE TIME SCALE USED IN TIME-TO-EVENT ANALYSES ON THE IDENTIFICATION OF TRAINING-RELATED RISK FACTORS IN RUNNING. British Journal of Sports Medicine, 2017, 51, 309.3-310.	6.7	0
50	THE IMPACT OF RUNNING LEVEL ON THE ASSOCIATION BETWEEN RUNNING DISTANCE AND INJURY RISK. British Journal of Sports Medicine, 2017, 51, 310.1-310.	6.7	0
51	Handball load and shoulder injury rate: a 31-week cohort study of 679 elite youth handball players. British Journal of Sports Medicine, 2017, 51, 231-237.	6.7	131
52	Closing Pandora's Box: adapting a systems ergonomics methodology for better understanding the ecological complexity underpinning the development and prevention of running-related injury. Theoretical Issues in Ergonomics Science, 2017, 18, 338-359.	1.8	24
53	Long-term effect of smartphone-delivered Interval Walking Training on physical activity in patients with type 2 diabetes: protocol for a parallel group single-blinded randomised controlled trial. BMJ Open, 2017, 7, e014036.	1.9	11
54	Medial shoe-ground pressure and specific running injuries: A 1-year prospective cohort study. Journal of Science and Medicine in Sport, 2017, 20, 830-834.	1.3	27

#	Article	IF	CITATIONS
55	When is a study result important for athletes, clinicians and team coaches/staff?. British Journal of Sports Medicine, 2017, 51, 1454-1455.	6.7	27
56	A framework for the etiology of runningâ€related injuries. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 1170-1180.	2.9	188
57	From control to causation: Validating a â€~complex systems model' of running-related injury development and prevention. Applied Ergonomics, 2017, 65, 345-354.	3.1	36
58	Design of ProjectRun21: a 14-week prospective cohort study of the influence of running experience and running pace on running-related injury in half-marathoners. Injury Epidemiology, 2017, 4, 30.	1.8	11
59	Risk and Protective Factors for Middle- and Long-Distance Running-Related Injury. Sports Medicine, 2017, 47, 869-886.	6.5	110
60	DO GENERAL MEDICAL PRACTITIONERS EXAMINE INJURED RUNNERS?. International Journal of Sports Physical Therapy, 2017, 12, 450-457.	1.3	1
61	RUNNING INJURY DEVELOPMENT: THE ATTITUDES OF MIDDLE- AND LONG-DISTANCE RUNNERS AND THEIR COACHES. International Journal of Sports Physical Therapy, 2017, 12, 634-641.	1.3	4
62	Validity of Self-Reported Running Distance. Journal of Strength and Conditioning Research, 2016, 30, 1592-1596.	2.1	29
63	The design of the run Clever randomized trial: running volume, â^'intensity and running-related injuries. BMC Musculoskeletal Disorders, 2016, 17, 177.	1.9	12
64	Shedding Light on the Etiology of Sports Injuries: A Look Behind the Scenes of Time-to-Event Analyses. Journal of Orthopaedic and Sports Physical Therapy, 2016, 46, 300-311.	3.5	59
65	INJURIES IN DISC GOLF - A DESCRIPTIVE CROSS-SECTIONAL STUDY. International Journal of Sports Physical Therapy, 2016, 11, 132-40.	1.3	0
66	Does running with or without diet changes reduce fat mass in novice runners? A 1-year prospective study. Journal of Sports Medicine and Physical Fitness, 2016, 56, 105-13.	0.7	2
67	Head-to-head comparison of intensive lifestyle intervention (U-TURN) versus conventional multifactorial care in patients with type 2 diabetes: protocol and rationale for an assessor-blinded, parallel group and randomised trial. BMJ Open, 2015, 5, e009764.	1.9	23
68	High Eccentric Hip Abduction Strength Reduces the Risk of Developing Patellofemoral Pain Among Novice Runners Initiating a Self-Structured Running Program: A 1-Year Observational Study. Journal of Orthopaedic and Sports Physical Therapy, 2015, 45, 153-161.	3.5	36
69	Cumulative Loads Increase at the Knee Joint With Slow-Speed Running Compared to Faster Running: A Biomechanical Study. Journal of Orthopaedic and Sports Physical Therapy, 2015, 45, 316-322.	3.5	40
70	Reliability of video-based identification of footstrike pattern and video time frame at initial contact in recreational runners. Gait and Posture, 2015, 42, 32-35.	1.4	25
71	Incidence of Running-Related Injuries Per 1000Âh of running in Different Types of Runners: A Systematic Review and Meta-Analysis. Sports Medicine, 2015, 45, 1017-1026.	6.5	283
72	A step towards understanding the mechanisms of running-related injuries. Journal of Science and Medicine in Sport, 2015, 18, 523-528.	1.3	89

#	Article	IF	CITATIONS
73	Collagen content in the vastus lateralis and the soleus muscle following a 90-day bed rest period with or without resistance exercises. Muscles, Ligaments and Tendons Journal, 2015, 5, 305-9.	0.3	5
74	Reliability of video-based quantification of the knee- and hip angle at foot strike during running. International Journal of Sports Physical Therapy, 2015, 10, 147-54.	1.3	41
75	A Prospective Study on Time to Recovery in 254 Injured Novice Runners. PLoS ONE, 2014, 9, e99877.	2.5	80
76	Foot pronation is not associated with increased injury risk in novice runners wearing a neutral shoe: a 1-year prospective cohort study. British Journal of Sports Medicine, 2014, 48, 440-447.	6.7	93
77	Comparisons of increases in knee and ankle joint moments following an increase in running speed from 8 to 12 to 16km·hâ~'1. Clinical Biomechanics, 2014, 29, 959-964.	1.2	31
78	Excessive Progression in Weekly Running Distance and Risk of Running-Related Injuries: An Association Which Varies According to Type of Injury. Journal of Orthopaedic and Sports Physical Therapy, 2014, 44, 739-747.	3.5	114
79	Normative values of eccentric hip abduction strength in novice runners: an equation adjusting for age and gender. International Journal of Sports Physical Therapy, 2014, 9, 68-75.	1.3	9
80	Running more than three kilometers during the first week of a running regimen may be associated with increased risk of injury in obese novice runners. International Journal of Sports Physical Therapy, 2014, 9, 338-45.	1.3	19
81	Normative values for the foot posture index between right and left foot: A descriptive study. Gait and Posture, 2013, 38, 843-846.	1.4	14
82	Footstrike patterns among novice runners wearing a conventional, neutral running shoe. Gait and Posture, 2013, 38, 354-356.	1.4	47
83	Predictors of Running-Related Injuries Among 930 Novice Runners. Orthopaedic Journal of Sports Medicine, 2013, 1, 232596711348731.	1.7	67
84	Can GPS Be Used to Detect Deleterious Progression in Training Volume Among Runners?. Journal of Strength and Conditioning Research, 2013, 27, 1471-1478.	2.1	56
85	Weekly running volume and risk of running-related injuries among marathon runners. International Journal of Sports Physical Therapy, 2013, 8, 111-20.	1.3	41
86	Classifying running-related injuries based upon etiology, with emphasis on volume and pace. International Journal of Sports Physical Therapy, 2013, 8, 172-9.	1.3	28
87	No association between q-angle and foot posture with running-related injuries: a 10 week prospective follow-up study. International Journal of Sports Physical Therapy, 2013, 8, 407-15.	1.3	10
88	Navicula Drop Test Ad Modum Brody. Journal of the American Podiatric Medical Association, 2012, 102, 34-38.	0.3	10
89	Classification of the height and flexibility of the medial longitudinal arch of the foot. Journal of Foot and Ankle Research, 2012, 5, 3.	1.9	51
90	Training errors and running related injuries: a systematic review. International Journal of Sports Physical Therapy, 2012, 7, 58-75.	1.3	115

#	Article	IF	CITATIONS
91	Video based analysis of dynamic midfoot function and its relationship with Foot Posture Index scores. Gait and Posture, 2010, 31, 126-130.	1.4	41
92	Perspectives for clinical measures of dynamic foot function—Reference data and methodological considerations. Gait and Posture, 2010, 31, 191-196.	1.4	16
93	Determination of normal values for navicular drop during walking: a new model correcting for foot length and gender. Journal of Foot and Ankle Research, 2009, 2, 12.	1.9	52
94	Study design of â€~Move More': Development and feasibility of a social-prescribing intervention to increase physical activity among inactive Danes. Scandinavian Journal of Public Health, 0, , 140349482210989.	2.3	4