Beata Kaczmarek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3622946/publications.pdf

Version: 2024-02-01

73 1,780 21 papers citations h-index

73 73 73 1859
all docs docs citations times ranked citing authors

38

g-index

#	Article	IF	Citations
1	The Physicochemical, Antioxidant, and Color Properties of Thin Films Based on Chitosan Modified by Different Phenolic Acids. Coatings, 2022, 12, 126.	1.2	9
2	Assessment of Melatonin-Cultured Collagen/Chitosan Scaffolds Cross-Linked by a Glyoxal Solution as Biomaterials for Wound Healing. Antioxidants, 2022, 11, 570.	2.2	7
3	The Preparation and Characterization of Emulsions with the Addition of Tannic Acid and Gallic Acid. Current Cosmetic Science, 2022, 1 , .	0.1	1
4	Scaffolds Loaded with Dialdehyde Chitosan and Collagen—Their Physico-Chemical Properties and Biological Assessment. Polymers, 2022, 14, 1818.	2.0	3
5	Nanosilver-loaded PMMA bone cement doped with different bioactive glasses $\hat{a} \in ``evaluation of cytocompatibility, antibacterial activity, and mechanical properties. Biomaterials Science, 2021, 9, 3112-3126.$	2.6	22
6	Preparation and Characterization of Fish Skin Collagen Material Modified with \hat{l}^2 -Glucan as Potential Wound Dressing. Materials, 2021, 14, 1322.	1.3	14
7	Evaluation of Polymeric Matrix Loaded with Melatonin for Wound Dressing. International Journal of Molecular Sciences, 2021, 22, 5658.	1.8	8
8	The Preparation and Characterization of Chitosan-Based Hydrogels Cross-Linked by Glyoxal. Materials, 2021, 14, 2449.	1.3	12
9	Study of castor oilâ€based auxetic polyurethane foams for cushioning applications. Polymer International, 2021, 70, 1631-1639.	1.6	3
10	The Physicochemical and Antibacterial Properties of Chitosan-Based Materials Modified with Phenolic Acids Irradiated by UVC Light. International Journal of Molecular Sciences, 2021, 22, 6472.	1.8	18
11	Bio-studies of scaffolds based on chitosan/tannic acid cross-linked by glyoxal. Materials Letters, 2021, 292, 129667.	1.3	6
12	The role of microorganisms in biodegradation of chitosan/tannic acid materials. International Journal of Biological Macromolecules, 2021, 184, 584-592.	3.6	21
13	The Study of Physicochemical Properties and Blood Compatibility of Sodium Alginate-Based Materials via Tannic Acid Addition. Materials, 2021, 14, 4905.	1.3	2
14	Microbial degradation of polyhydroxybutyrate with embedded polyhexamethylene guanidine derivatives. International Journal of Biological Macromolecules, 2021, 187, 309-318.	3.6	11
15	Magneto-thermal response of Fe3O4@CTAB nanoparticles for cancer hyperthermia applications. Materials Today Communications, 2021, 28, 102583.	0.9	19
16	The Characterization of Scaffolds Based on Dialdehyde Chitosan/Hyaluronic Acid. Materials, 2021, 14, 4993.	1.3	8
17	Characterization of Collagen/Beta Glucan Hydrogels Crosslinked with Tannic Acid. Polymers, 2021, 13, 3412.	2.0	7
18	Chitosan-based films enriched by caffeic acid with poly(ethylene glycol) – A physicochemical and antibacterial properties evaluation. International Journal of Biological Macromolecules, 2021, 192, 728-735.	3.6	10

#	Article	IF	Citations
19	Spectroscopic studies of UV-irradiated poly(vinyl alcohol)/elastin blends. International Journal of Polymer Analysis and Characterization, 2021, 26, 84-96.	0.9	1
20	The physical and chemical properties of hydrogels based on natural polymers., 2020, , 151-172.		45
21	Normal and cancer cells response on the thin films based on chitosan and tannic acid. Toxicology in Vitro, 2020, 62, 104688.	1.1	10
22	Development of tannic acid-enriched materials modified by poly(ethylene glycol) for potential applications as wound dressing. Progress in Biomaterials, 2020, 9, 115-123.	1.8	13
23	Novel Eco-Friendly Tannic Acid-Enriched Hydrogels-Preparation and Characterization for Biomedical Application. Materials, 2020, 13, 4572.	1.3	11
24	Design, characterization and in vitro evaluation of thin films enriched by tannic acid complexed by Fe(III) ions. Progress in Biomaterials, 2020, 9, 249-257.	1.8	6
25	Improving Sodium Alginate Films Properties by Phenolic Acid Addition. Materials, 2020, 13, 2895.	1.3	33
26	Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview. Materials, 2020, 13, 3224.	1.3	224
27	Modification of Collagen Properties with Ferulic Acid. Materials, 2020, 13, 3419.	1.3	17
28	Collagen-Based Materials Modified by Phenolic Acids—A Review. Materials, 2020, 13, 3641.	1.3	30
29	Superhydrophilic nanostructured surfaces of beta Ti 29Nb alloy for cardiovascular stent applications. Surface and Coatings Technology, 2020, 396, 125965.	2.2	18
30	The mechanical properties and bactericidal degradation effectiveness of tannic acid-based thin films for wound care. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103916.	1.5	18
31	Surface and antibacterial properties of thin films based on collagen and thymol. Materials Today Communications, 2020, 22, 100949.	0.9	22
32	Properties of scaffolds based on chitosan and collagen with bioglass 45S5. IET Nanobiotechnology, 2020, 14, 830-832.	1.9	2
33	The influence of UV-irradiation on the poly(vinyl alcohol)/hyaluronic acid film properties. Molecular Crystals and Liquid Crystals, 2019, 680, 85-95.	0.4	1
34	The characterization of thin films based on chitosan and tannic acid mixture for potential applications as wound dressings. Polymer Testing, 2019, 78, 106007.	2.3	38
35	Characterization of scaffolds based on chitosan and collagen with glycosaminoglycans. International Journal of Polymer Analysis and Characterization, 2019, 24, 374-380.	0.9	3
36	The film-forming properties of chitosan with tannic acid addition. Materials Letters, 2019, 245, 22-24.	1.3	39

#	Article	IF	Citations
37	The Isolation of Glycosaminoglycans from Fish Eyeballs and Their Potential Application. , 2019, , 403-412.		O
38	Characterization of scaffolds based on chitosan and collagen with glycosaminoglycans and sodium alginate addition. Polymer Testing, 2018, 68, 229-232.	2.3	16
39	Influence of glycosaminoglycans on the properties of thin films based on chitosan/collagen blends. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 189-193.	1.5	22
40	Antimicrobial activity of new materials based on the blends of collagen/chitosan/hyaluronic acid with gentamicin sulfate addition. Materials Science and Engineering C, 2018, 86, 103-108.	3.8	56
41	New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS. International Journal of Biological Macromolecules, 2018, 107, 247-253.	3.6	67
42	The application of chitosan/collagen/hyaluronic acid sponge cross-linked by dialdehyde starch addition as a matrix for calcium phosphate in situ precipitation. International Journal of Biological Macromolecules, 2018, 107, 470-477.	3.6	29
43	Scaffolds based on chitosan and collagen with glycosaminoglycans cross-linked by tannic acid. Polymer Testing, 2018, 65, 163-168.	2.3	33
44	Characterization of gelatin and chitosan scaffolds cross-linked by addition of dialdehyde starch. Biomedical Materials (Bristol), 2018, 13, 015016.	1.7	16
45	Chitosan/collagen blends with inorganic and organic additive—A review. Advances in Polymer Technology, 2018, 37, 2367-2376.	0.8	22
46	The physicochemical properties of 3D materials based on hyaluronic acid modified by tannic acid addition. Molecular Crystals and Liquid Crystals, 2018, 670, 90-96.	0.4	10
47	InÂvivo studies of novel scaffolds with tannic acid addition. Polymer Degradation and Stability, 2018, 158, 26-30.	2.7	15
48	In vivo study on scaffolds based on chitosan, collagen, and hyaluronic acid with hydroxyapatite. International Journal of Biological Macromolecules, 2018, 118, 938-944.	3.6	41
49	Physicochemical properties of scaffolds based on mixtures of chitosan, collagen and glycosaminoglycans with nano-hydroxyapatite addition. International Journal of Biological Macromolecules, 2018, 118, 1880-1883.	3.6	13
50	Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite. International Journal of Biological Macromolecules, 2017, 102, 658-666.	3.6	48
51	The comparison of physic-chemical properties of chitosan/collagen/hyaluronic acid composites with nano-hydroxyapatite cross-linked by dialdehyde starch and tannic acid. Polymer Testing, 2017, 62, 171-176.	2.3	39
52	Preparation and characterization of collagen/chitosan/hyaluronic acid thin films for application in hair care cosmetics. Pure and Applied Chemistry, 2017, 89, 1829-1839.	0.9	50
53	The cells viability study on the composites of chitosan and collagen with glycosaminoglycans isolated from fish skin. Materials Letters, 2017, 206, 166-168.	1.3	12
54	Collagen-based scaffolds enriched with glycosaminoglycans isolated from skin of Salmo salar fish. Polymer Testing, 2017, 62, 132-136.	2.3	16

#	Article	IF	CITATIONS
55	Drug Release from Porous Matrixes based on Natural Polymers. Current Pharmaceutical Biotechnology, 2017, 18, 721-729.	0.9	12
56	L-ascorbic acid release from polymeric matrixes based on blends of chitosan, collagen and hyaluronic acid. Molecular Crystals and Liquid Crystals, 2016, 640, 46-53.	0.4	5
57	Physico-chemical properties of three-component mixtures based on chitosan, hyaluronic acid and collagen. Molecular Crystals and Liquid Crystals, 2016, 640, 21-29.	0.4	13
58	Modification of 3D materials based on chitosan and collagen blends by sodium alginate. Molecular Crystals and Liquid Crystals, 2016, 640, 39-45.	0.4	13
59	The miscibility of collagen/hyaluronic acid/chitosan blends investigated in dilute solutions and solids. Journal of Molecular Liquids, 2016, 220, 726-730.	2.3	56
60	Surface and thermal properties of collagen/hyaluronic acid blends containing chitosan. International Journal of Biological Macromolecules, 2016, 92, 371-376.	3.6	54
61	Gentamicin release from chitosan and collagen composites. Journal of Drug Delivery Science and Technology, 2016, 35, 353-359.	1.4	32
62	3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid. International Journal of Biological Macromolecules, 2016, 89, 442-448.	3.6	77
63	<i><scp>CCR</scp>5</i> gene polymorphism affects the risk of Gv <scp>HD</scp> after haematopoietic stem cell transplantation from an unrelated donor. British Journal of Haematology, 2015, 171, 285-288.	1.2	12
64	The influence of UV-irradiation on chitosan modified by the tannic acid addition. Journal of Photochemistry and Photobiology B: Biology, 2015, 148, 333-339.	1.7	50
65	Beneficial effect of the CXCL12-3′A variant for patients undergoing hematopoietic stem cell transplantation from unrelated donors. Cytokine, 2015, 76, 182-186.	1.4	4
66	Mechanical and Morphological Studies of Chitosan/Clay Composites. Molecular Crystals and Liquid Crystals, 2014, 590, 193-198.	0.4	18
67	Modification of collagen and chitosan mixtures by the addition of tannic acid. Journal of Molecular Liquids, 2014, 199, 318-323.	2.3	95
68	Characterization of chitosan composites with various clays. International Journal of Biological Macromolecules, 2014, 65, 534-541.	3.6	81
69	CHARACTERISATION OF CHITOSAN AFTER CROSS-LINKING BY TANNIC ACID. Progress on Chemistry and Application of Chitin and Its Derivatives, 2014, 19, 135-138.	0.1	9
70	Biological Properties of Chitosan/Collagen Composites. Key Engineering Materials, 0, 587, 205-210.	0.4	13
71	Biopolymer Blends as Potential Biomaterials and Cosmetic Materials. Key Engineering Materials, 0, 583, 95-100.	0.4	8
72	Properties and Characterization of Chitosan/Collagen/PMMA Composites Containing Hydroxyapatite. Key Engineering Materials, 0, 672, 247-256.	0.4	6

#	Article	IF	CITATIONS
73	Study of silver nanoparticle-loaded auxetic polyurethane foams for medical cushioning applications. Polymer Bulletin, 0 , 1 .	1.7	5