Xiao-song Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3622650/publications.pdf

Version: 2024-02-01

153 papers	9,056 citations	54 h-index	48277 88 g-index
158 all docs	158 docs citations	158 times ranked	8771 citing authors

#	Article	IF	CITATIONS
1	Neural tissue engineering options for peripheral nerve regeneration. Biomaterials, 2014, 35, 6143-6156.	5.7	523
2	Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Progress in Neurobiology, 2011, 93, 204-230.	2.8	520
3	Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials, 2007, 28, 1643-1652.	5.7	293
4	Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials, 2007, 28, 5526-5535.	5.7	291
5	Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation. Cell Stem Cell, 2020, 26, 766-781.e9.	5.2	268
6	Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain, 2005, 128, 1897-1910.	3.7	264
7	The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials, 2004, 25, 4273-4278.	5.7	260
8	Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials, 2014, 35, 2253-2263.	5.7	225
9	Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography. Engineering, 2017, 3, 36-54.	3.2	193
10	Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations. Cell, 2018, 174, 521-535.e13.	13.5	165
11	A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions. Neuron, 2017, 95, 817-833.e4.	3.8	155
12	The influence of substrate stiffness on the behavior and functions of Schwann cells in culture. Biomaterials, 2012, 33, 6672-6681.	5.7	130
13	miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Research, 2012, 40, 10356-10365.	6.5	127
14	Let-7 microRNAs Regenerate Peripheral Nerve Regeneration by Targeting Nerve Growth Factor. Molecular Therapy, 2015, 23, 423-433.	3.7	124
15	Extracellular Matrix Scaffolds for Tissue Engineering and Regenerative Medicine. Current Stem Cell Research and Therapy, 2017, 12, 233-246.	0.6	124
16	Biodegradable materials for bone defect repair. Military Medical Research, 2020, 7, 54.	1.9	121
17	Long-term outcome of the repair of 50Âmm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts. Biomaterials, 2013, 34, 100-111.	5.7	117
18	Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Research, 2009, 1262, 7-15.	1.1	116

#	Article	IF	CITATIONS
19	Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments. Biomaterials, 2017, 134, 64-77.	5.7	113
20	Scaffolds for peripheral nerve repair and reconstruction. Experimental Neurology, 2019, 319, 112761.	2.0	106
21	Repair of Rat Sciatic Nerve Gap by a Silk Fibroin-Based Scaffold Added with Bone Marrow Mesenchymal Stem Cells. Tissue Engineering - Part A, 2011, 17, 2231-2244.	1.6	104
22	miR-221/222 promote Schwann cell proliferation and migration by targeting LASS2 following sciatic nerve injury. Journal of Cell Science, 2012, 125, 2675-83.	1.2	101
23	Use of Tissue-Engineered Nerve Grafts Consisting of a Chitosan/Poly(lactic- <i>co</i> glycolic) Tj ETQq1 1 0.78431 Nerve Gaps. Tissue Engineering - Part A, 2010, 16, 3779-3790.	.4 rgBT /C 1.6	overlock 10 100
24	Deep Sequencing and Bioinformatic Analysis of Lesioned Sciatic Nerves after Crush Injury. PLoS ONE, 2015, 10, e0143491.	1.1	91
25	Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury. Scientific Reports, 2016, 6, 29121.	1.6	91
26	microRNA-222 Targeting PTEN Promotes Neurite Outgrowth from Adult Dorsal Root Ganglion Neurons following Sciatic Nerve Transection. PLoS ONE, 2012, 7, e44768.	1.1	91
27	Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on Schwann cells. Biomaterials, 2014, 35, 8503-8513.	5.7	87
28	Study of in vivo differentiation of rat bone marrow stromal cells into schwann cell-like cells. Microsurgery, 2006, 26, 111-115.	0.6	85
29	The regulatory roles of non-coding RNAs in nerve injury and regeneration. Progress in Neurobiology, 2015, 134, 122-139.	2.8	85
30	Evaluation on <i>in vitro</i> biocompatibility of silk fibroinâ€based biomaterials with primarily cultured hippocampal neurons. Journal of Biomedical Materials Research - Part A, 2009, 91A, 166-174.	2.1	79
31	Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an inÂvitro cultured nerve equivalent and a silk fibroin-based scaffold. Biomaterials, 2012, 33, 3860-3867.	5.7	79
32	Chitosan Degradation Products Promote Nerve Regeneration by Stimulating Schwann Cell Proliferation via miR-27a/FOXO1 Axis. Molecular Neurobiology, 2016, 53, 28-39.	1.9	79
33	Profile of MicroRNAs following Rat Sciatic Nerve Injury by Deep Sequencing: Implication for Mechanisms of Nerve Regeneration. PLoS ONE, 2011, 6, e24612.	1.1	79
34	Ingenuity Pathway Analysis of Gene Expression Profiles in Distal Nerve Stump following Nerve Injury: Insights into Wallerian Degeneration. Frontiers in Cellular Neuroscience, 2016, 10, 274.	1.8	76
35	Joint Use of a Chitosan/PLGA Scaffold and MSCs to Bridge an Extra Large Gap in Dog Sciatic Nerve. Neurorehabilitation and Neural Repair, 2012, 26, 96-106.	1.4	73
36	Chitosan/polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments. Biomaterials, 2009, 30, 5004-5018.	5.7	72

3

#	Article	IF	CITATIONS
37	Repairing a 35â€mmâ€long median nerve defect with a chitosan/PGA artificial nerve graft in the human: A case study. Microsurgery, 2008, 28, 238-242.	0.6	71
38	Nerve conduits based on immobilization of nerve growth factor onto modified chitosan by using genipin as a crosslinking agent. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 519-525.	2.0	71
39	The transcriptional landscape of dorsal root ganglia after sciatic nerve transection. Scientific Reports, 2015, 5, 16888.	1.6	69
40	Differential Gene Expression Profiling and Biological Process Analysis in Proximal Nerve Segments after Sciatic Nerve Transection. PLoS ONE, 2013, 8, e57000.	1.1	67
41	Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration. Biotechnology Letters, 2004, 26, 1793-1797.	1.1	65
42	Electrospun silk fibroinâ€based neural scaffold for bridging a long sciatic nerve gap in dogs. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1143-e1153.	1.3	65
43	Fibroblastâ€derived tenascinâ€ <scp>C</scp> promotes <scp>S</scp> chwann cell migration through β1â€integrin dependent pathway during peripheral nerve regeneration. Glia, 2016, 64, 374-385.	2.5	63
44	Open versus endoscopic carpal tunnel release: a systematic review and meta-analysis of randomized controlled trials. BMC Musculoskeletal Disorders, 2020, 21, 272.	0.8	63
45	miR-9 inhibits Schwann cell migration by targeting CTHRC1 following sciatic nerve injury. Journal of Cell Science, 2014, 127, 967-76.	1.2	62
46	The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model. Neuroscience Letters, 2009, 454, 239-243.	1.0	60
47	Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neuroscience Letters, 2008, 444, 270-274.	1.0	59
48	Altered long noncoding RNA expressions in dorsal root ganglion after rat sciatic nerve injury. Neuroscience Letters, 2013, 534, 117-122.	1.0	59
49	PCAF Improves Glucose Homeostasis by Suppressing the Gluconeogenic Activity of PGC-1α. Cell Reports, 2014, 9, 2250-2262.	2.9	59
50	Macrophage migration inhibitory factor activates inflammatory responses of astrocytes through interaction with CD74 receptor. Oncotarget, 2017, 8, 2719-2730.	0.8	59
51	Effect of chitooligosaccharide on neuronal differentiation of PCâ€12 cells. Cell Biology International, 2009, 33, 352-356.	1.4	57
52	Non-coding RNAs as Emerging Regulators of Neural Injury Responses and Regeneration. Neuroscience Bulletin, 2016, 32, 253-264.	1.5	57
53	The protective effects of Achyranthes bidentata polypeptides against NMDA-induced cell apoptosis in cultured hippocampal neurons through differential modulation of NR2A- and NR2B-containing NMDA receptors. Brain Research Bulletin, 2008, 77, 274-281.	1.4	56
54	The protective effects of Achyranthes bidentata polypeptides in an experimental model of mouse sciatic nerve crush injury. Brain Research Bulletin, 2010, 81, 25-32.	1.4	56

#	Article	IF	Citations
55	Long nonâ€coding <scp>RNA</scp> uc.217 regulates neurite outgrowth in dorsal root ganglion neurons following peripheral nerve injury. European Journal of Neuroscience, 2015, 42, 1718-1725.	1.2	55
56	Overlapping Mechanisms of Peripheral Nerve Regeneration and Angiogenesis Following Sciatic Nerve Transection. Frontiers in Cellular Neuroscience, 2017, 11, 323.	1.8	55
57	Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. Annals of Translational Medicine, 2020, 8, 1681-1681.	0.7	54
58	MiR-340 Regulates Fibrinolysis and Axon Regrowth Following Sciatic Nerve Injury. Molecular Neurobiology, 2017, 54, 4379-4389.	1.9	52
59	Early changes of microRNAs expression in the dorsal root ganglia following rat sciatic nerve transection. Neuroscience Letters, 2011, 494, 89-93.	1.0	51
60	Surgical repair of a 30 mm long human median nerve defect in the distal forearm by implantation of a chitosan-PGA nerve guidance conduit. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 163-168.	1.3	51
61	Morphological and Functional Characterization of Predifferentiation of Myelinating Glia-Like Cells from Human Bone Marrow Stromal Cells Through Activation of F3/Notch Signaling in Mouse Retina. Stem Cells, 2008, 26, 580-590.	1.4	50
62	Neurotrophic Actions of Bone Marrow Stromal Cells on Primary Culture of Dorsal Root Ganglion Tissues and Neurons. Journal of Molecular Neuroscience, 2010, 40, 332-341.	1.1	50
63	Progress and perspectives of neural tissue engineering. Frontiers of Medicine, 2015, 9, 401-411.	1.5	49
64	<scp><i>Achyranthes bidentata</i></scp> polypeptide protects dopaminergic neurons from apoptosis in Parkinson's disease models both <i>in vitro</i> and <i>in vivo</i> British Journal of Pharmacology, 2018, 175, 631-643.	2.7	49
65	Global analysis of transcriptome in dorsal root ganglia following peripheral nerve injury in rats. Biochemical and Biophysical Research Communications, 2016, 478, 206-212.	1.0	47
66	miR-21 and miR-222 inhibit apoptosis of adult dorsal root ganglion neurons by repressing TIMP3 following sciatic nerve injury. Neuroscience Letters, 2015, 586, 43-49.	1.0	45
67	Hypoxia-Induced Upregulation of miR-132 Promotes Schwann Cell Migration After Sciatic Nerve Injury by Targeting PRKAG3. Molecular Neurobiology, 2016, 53, 5129-5139.	1.9	45
68	Microarray and qPCR Analyses of Wallerian Degeneration in Rat Sciatic Nerves. Frontiers in Cellular Neuroscience, 2017, 11, 22.	1.8	45
69	Application of marrow mesenchymal stem cell-derived extracellular matrix in peripheral nerve tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2250-2260.	1.3	42
70	Bionic microenvironment-inspired synergistic effect of anisotropic micro-nanocomposite topology and biology cues on peripheral nerve regeneration. Science Advances, 2021, 7, .	4.7	42
71	Expression changes and bioinformatic analysis of Wallerian degeneration after sciatic nerve injury in rat. Neuroscience Bulletin, 2013, 29, 321-332.	1.5	40
72	IncRNA TNXA-PS1 Modulates Schwann Cells by Functioning As a Competing Endogenous RNA Following Nerve Injury. Journal of Neuroscience, 2018, 38, 6574-6585.	1.7	40

#	Article	IF	Citations
73	Skeletal Muscle Atrophy Was Alleviated by Salidroside Through Suppressing Oxidative Stress and Inflammation During Denervation. Frontiers in Pharmacology, 2019, 10, 997.	1.6	40
74	Altered microRNA expression following sciatic nerve resection in dorsal root ganglia of rats. Acta Biochimica Et Biophysica Sinica, 2011, 43, 909-915.	0.9	39
75	Repair of peripheral nerve defects by nerve grafts incorporated with extracellular vesicles from skin-derived precursor Schwann cells. Acta Biomaterialia, 2021, 134, 190-203.	4.1	38
76	Identification of a Vav2-dependent mechanism for GDNF/Ret control of mesolimbic DAT trafficking. Nature Neuroscience, 2015, 18, 1084-1093.	7.1	37
77	miR-129 controls axonal regeneration via regulating insulin-like growth factor-1 in peripheral nerve injury. Cell Death and Disease, 2018, 9, 720.	2.7	37
78	Gene Network Revealed Involvements of Birc2, Birc3 and Tnfrsf1a in Anti-Apoptosis of Injured Peripheral Nerves. PLoS ONE, 2012, 7, e43436.	1.1	36
79	Bone marrow mesenchymal stem cell-derived acellular matrix-coated chitosan/silk scaffolds for neural tissue regeneration. Journal of Materials Chemistry B, 2017, 5, 1246-1257.	2.9	36
80	Suppression of astrocytic autophagy by $\hat{l}\pm B$ -crystallin contributes to $\hat{l}\pm$ -synuclein inclusion formation. Translational Neurodegeneration, 2019, 8, 3.	3.6	36
81	Chitooligosaccharides promote peripheral nerve regeneration in a rabbit common peroneal nerve crush injury model. Microsurgery, 2009, 29, 650-656.	0.6	35
82	Repairing rat sciatic nerve injury by a nerveâ€growthâ€factorâ€loaded, chitosanâ€based nerve conduit. Biotechnology and Applied Biochemistry, 2012, 59, 388-394.	1.4	34
83	Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Antioxidants, 2021, 10, 1012.	2.2	34
84	Differential Circular RNA Expression Profiles Following Spinal Cord Injury in Rats: A Temporal and Experimental Analysis. Frontiers in Neuroscience, 2019, 13, 1303.	1.4	33
85	Morphology, Migration, and Transcriptome Analysis of Schwann Cell Culture on Butterfly Wings with Different Surface Architectures. ACS Nano, 2018, 12, 9660-9668.	7.3	32
86	Tau modulated Schwann cell proliferation, migration, and differentiation following peripheral nerve injury. Journal of Cell Science, 2019, 132, .	1.2	32
87	BMSC-derived extracellular matrix better optimizes the microenvironment to support nerve regeneration. Biomaterials, 2022, 280, 121251.	5.7	31
88	Polyglycolic acid filaments guide Schwann cell migration inÂvitro and inÂvivo. Biotechnology Letters, 2008, 30, 1937-1942.	1.1	30
89	Identification and functional annotation of novel microRNAs in the proximal sciatic nerve after sciatic nerve transection. Science China Life Sciences, 2011, 54, 806-812.	2.3	29
90	Repair of Rat Sciatic Nerve Defects by Using Allogeneic Bone Marrow Mononuclear Cells Combined with Chitosan/Silk Fibroin Scaffold. Cell Transplantation, 2016, 25, 983-993.	1.2	28

#	Article	IF	Citations
91	The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. Journal of Biological Chemistry, 2020, 295, 8374-8386.	1.6	28
92	Signaling pathways regulating dose-dependent dual effects of TNF- \hat{l}_{\pm} on primary cultured Schwann cells. Molecular and Cellular Biochemistry, 2013, 378, 237-246.	1.4	27
93	Rab8a/Rab11a regulate intercellular communications between neural cells via tunneling nanotubes. Cell Death and Disease, 2016, 7, e2523-e2523.	2.7	27
94	Derivation of Schwann cell precursors from neural crest cells resident in bone marrow for cell therapy to improve peripheral nerve regeneration. Biomaterials, 2016, 89, 25-37.	5.7	27
95	BUB1B and circBUB1B_544aa aggravate multiple myeloma malignancy through evoking chromosomal instability. Signal Transduction and Targeted Therapy, 2021, 6, 361.	7.1	27
96	Comparative Proteomic Analysis of Differentially Expressed Proteins between Peripheral Sensory and Motor Nerves. Journal of Proteome Research, 2012, 11, 3077-3089.	1.8	26
97	Angiogenesis in tissue-engineered nerves evaluated objectively using MICROFIL perfusion and micro-CT scanning. Neural Regeneration Research, 2016, 11, 168.	1.6	24
98	A Schwann cell–enriched circular RNA circâ€Ankib1 regulates Schwann cell proliferation following peripheral nerve injury. FASEB Journal, 2019, 33, 12409-12424.	0.2	23
99	Deciphering glial scar after spinal cord injury. Burns and Trauma, 2021, 9, tkab035.	2.3	23
100	<i>Achyranthes bidentata</i> polypeptides confer neuroprotection through inhibition of reactive oxygen species production, Bax expression, and mitochondrial dysfunction induced by overstimulation of Nâ€methylâ€Dâ€aspartate receptors. Journal of Neuroscience Research, 2010, 88, 669-676.	1.3	22
101	Tubulation repair mitigates misdirection of regenerating motor axons across a sciatic nerve gap in rats. Scientific Reports, 2018, 8, 3443.	1.6	22
102	Cell populations in neonatal rat peripheral nerves identified by singleâ€cell transcriptomics. Glia, 2021, 69, 765-778.	2.5	22
103	Rationally Designed, Selfâ€Assembling, Multifunctional Hydrogel Depot Repairs Severe Spinal Cord Injury. Advanced Healthcare Materials, 2021, 10, e2100242.	3.9	22
104	Heterogeneity analysis of astrocytes following spinal cord injury at singleâ€eell resolution. FASEB Journal, 2022, 36, .	0.2	22
105	Effects of Bone Marrow Stromal Cell-conditioned Medium on Primary Cultures of Peripheral Nerve Tissues and Cells. Neurochemical Research, 2009, 34, 1685-1694.	1.6	21
106	Spatiotemporal Dynamics of the Molecular Expression Pattern and Intercellular Interactions in the Glial Scar Response to Spinal Cord Injury. Neuroscience Bulletin, 2023, 39, 213-244.	1.5	21
107	Identification and functional analysis of novel microâ€rnas in rat dorsal root ganglia after sciatic nerve resection. Journal of Neuroscience Research, 2012, 90, 791-801.	1.3	19
108	Neurotrophic and neuroprotective actions of Achyranthes bidentata polypeptides on cultured dorsal root ganglia of rats and on crushed common peroneal nerve of rabbits. Neuroscience Letters, 2014, 562, 7-12.	1.0	19

#	Article	IF	CITATIONS
109	Basic Fibroblast Growth Factor (bFGF) Facilitates Differentiation of Adult Dorsal Root Ganglia-Derived Neural Stem Cells Toward Schwann Cells by Binding to FGFR-1 Through MAPK/ERK Activation. Journal of Molecular Neuroscience, 2014, 52, 538-551.	1.1	19
110	China's landscape in regenerative medicine. Biomaterials, 2017, 124, 78-94.	5.7	18
111	SKP-SC-EVs Mitigate Denervated Muscle Atrophy by Inhibiting Oxidative Stress and Inflammation and Improving Microcirculation. Antioxidants, 2022, $11,66.$	2.2	18
112	The Landscape of Gene Expression and Molecular Regulation Following Spinal Cord Hemisection in Rats. Frontiers in Molecular Neuroscience, 2019, 12, 287.	1.4	17
113	Biodegradable Materials and the Tissue Engineering of Nerves. Engineering, 2021, 7, 1700-1703.	3.2	17
114	Noncoding RNAs and Their Potential Therapeutic Applications in Tissue Engineering. Engineering, 2017, 3, 3-15.	3.2	16
115	Scar-modulating treatments for central nervous system injury. Neuroscience Bulletin, 2014, 30, 967-984.	1.5	15
116	Elevated Hapln2 Expression Contributes to Protein Aggregation and Neurodegeneration in an Animal Model of Parkinson's Disease. Frontiers in Aging Neuroscience, 2016, 8, 197.	1.7	15
117	Alternative RNA splicing associated with axon regeneration after rat peripheral nerve injury. Experimental Neurology, 2018, 308, 80-89.	2.0	15
118	Biocompatibility evaluation of electrospun silk fibroin nanofibrous mats with primarily cultured rat hippocampal neurons. Bio-Medical Materials and Engineering, 2013, 23, 545-554.	0.4	14
119	Visible-light-responsive photocatalyst with a microsphere structure: preparation and photocatalytic performance of CQDs@BiOCl. Journal of Materials Science: Materials in Electronics, 2019, 30, 16321-16336.	1.1	14
120	Combination of biomaterial transplantation and genetic enhancement of intrinsic growth capacities to promote CNS axon regeneration after spinal cord injury. Frontiers of Medicine, 2019, 13, 131-137.	1.5	14
121	First-Principle Insight Into the Effects of Oxygen Vacancies on the Electronic, Photocatalytic, and Optical Properties of Monoclinic BiVO4(001). Frontiers in Chemistry, 2020, 8, 601983.	1.8	13
122	Molecular Regulatory Mechanism and Toxicology of Neurodegenerative Processes in MPTP/Probenecid-Induced Progressive Parkinson's Disease Mice Model Revealed by Transcriptome. Molecular Neurobiology, 2021, 58, 603-616.	1.9	13
123	Achyranthes bidentata Blume extract promotes neuronal growth in cultured embryonic rat hippocampal neurons. Progress in Natural Science: Materials International, 2009, 19, 549-555.	1.8	12
124	Electrospun, Reinforcing Network-Containing, Silk Fibroin-Based Nerve Guidance Conduits for Peripheral Nerve Repair. Journal of Biomaterials and Tissue Engineering, 2016, 6, 53-60.	0.0	12
125	Neurological function following intra-neural injection of fluorescent neuronal tracers in rats. Neural Regeneration Research, 2013, 8, 1253-61.	1.6	12
126	Transcriptomic Landscapes of Immune Response and Axonal Regeneration by Integrative Analysis of Molecular Pathways and Interactive Networks Post-sciatic Nerve Transection. Frontiers in Neuroscience, 2018, 12, 457.	1.4	11

#	Article	IF	Citations
127	Dysregulated Transcription Factor TFAP2A After Peripheral Nerve Injury Modulated Schwann Cell Phenotype. Neurochemical Research, 2019, 44, 2776-2785.	1.6	11
128	Tissue-engineered nerve grafts using a scaffold-independent and injectable drug delivery system: a novel design with translational advantages. Journal of Neural Engineering, 2019, 16, 036030.	1.8	11
129	Loc680254 regulates Schwann cell proliferation through Psrc1 and Ska1 as a <scp>microRNA</scp> sponge following sciatic nerve injury. Glia, 2021, 69, 2391-2403.	2.5	11
130	Transcriptome Analysis of Immune Receptor Activation and Energy Metabolism Reduction as the Underlying Mechanisms in Interleukin-6-Induced Skeletal Muscle Atrophy. Frontiers in Immunology, 2021, 12, 730070.	2.2	11
131	Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia. Science China Life Sciences, 2010, 53, 1057-1064.	2.3	10
132	Tissue Engineering in Peripheral Nerve Regeneration. , 2015, , 73-99.		10
133	Klf2-Vav1-Rac1 axis promotes axon regeneration after peripheral nerve injury. Experimental Neurology, 2021, 343, 113788.	2.0	10
134	Singleâ€cell sequencing reveals microglia induced angiogenesis by specific subsets of endothelial cells following spinal cord injury. FASEB Journal, 2022, 36, .	0.2	9
135	miR-20a Promotes the Axon Regeneration of DRG Neurons by Targeting Nr4a3. Neuroscience Bulletin, 2021, 37, 569-574.	1.5	8
136	Silencing the enhancer of zeste homologue 2, Ezh2, represses axon regeneration of dorsal root ganglion neurons. Neural Regeneration Research, 2022, 17, 1518.	1.6	8
137	Fabrication and Evaluation of Chitinâ€Based Nerve Guidance Conduits Used to Promote Peripheral Nerve Regeneration. Advanced Engineering Materials, 2009, 11, B209.	1.6	7
138	Expression and identification of olfactory receptors in sciatic nerve and dorsal root ganglia of rats. Neuroscience Letters, 2015, 600, 171-175.	1.0	7
139	Minocycline alleviates peripheral nerve adhesion by promoting regulatory macrophage polarization via the TAK1 and its downstream pathway. Life Sciences, 2021, 276, 119422.	2.0	7
140	Brachial plexus bridging with specific extracellular matrix-modified chitosan/silk scaffold: a new expand of tissue engineered nerve graft. Journal of Neural Engineering, 2022, 19, 026010.	1.8	7
141	Global alternative splicing landscape of skeletal muscle atrophy induced by hindlimb unloading. Annals of Translational Medicine, 2021, 9, 643-643.	0.7	6
142	Biocompatibility and biosafety of butterfly wings for the clinical use of tissue-engineered nerve grafts. Neural Regeneration Research, 2021, 16, 1606.	1.6	6
143	Achyranthes bidentata polypeptide protects dopaminergic neurons from apoptosis induced by rotenone and 6-hydroxydopamine. Neural Regeneration Research, 2018, 13, 1981.	1.6	6
144	Bidentatide, a Novel Plant Peptide Derived from Achyranthes bidentata Blume: Isolation, Characterization, and Neuroprotection through Inhibition of NR2B-Containing NMDA Receptors. International Journal of Molecular Sciences, 2021, 22, 7977.	1.8	5

#	Article	IF	Citations
145	Potential Involvement of Snail Members in Neuronal Survival and Astrocytic Migration during the Gecko Spinal Cord Regeneration. Frontiers in Cellular Neuroscience, 2017, 11, 113.	1.8	3
146	Protective effects and molecular mechanisms of Achyranthes bidentata polypeptide k on Schwann cells. Annals of Translational Medicine, 2021, 9, 381-381.	0.7	3
147	Tissue Engineering and Regulatory Science. Engineering, 2022, 13, 9-12.	3.2	3
148	Comparative transcriptomic profiling of peripheral efferent and afferent nerve fibres at different developmental stages in mice. Scientific Reports, 2018, 8, 11990.	1.6	1
149	Stem Cell and Peripheral Nerve Regeneration. Translational Medicine Research, 2015, , 219-246.	0.0	1
150	Combined Use of Chitosan-PGLA Nerve Grafts and Bone Marrow Mononuclear Cells to Repair a 50-mm-long Median Nerve Defect Combined with an 80-mm-long Ulnar Nerve Defect in the Human Upper Arm. Current Stem Cell Research and Therapy, 2022, 17, 389-397.	0.6	1
151	Evolution of the ErbB gene family and analysis of regulators of Egfr expression during development of the rat spinal cord. Neural Regeneration Research, 2022, 17, 2484.	1.6	1
152	Bilateral radial collateral ligament rupture in a shoemaker. Medicine (United States), 2020, 99, e20126.	0.4	0
153	Identification of Neuronal Cells in Sciatic Nerves of Adult Rats. Frontiers in Cellular Neuroscience, 2022, 16, 816814.	1.8	0