Luisa Pascucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3622418/publications.pdf

Version: 2024-02-01

236612 3,159 70 25 citations h-index papers

54 g-index 71 71 71 5017 docs citations times ranked citing authors all docs

161609

#	Article	IF	CITATIONS
1	Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. Journal of Controlled Release, 2014, 192, 262-270.	4.8	697
2	Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. Stem Cells Translational Medicine, 2017, 6, 1018-1028.	1.6	399
3	Immunoregulatory Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles on T Lymphocytes. Cell Transplantation, 2015, 24, 2615-2627.	1.2	228
4	Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opinion on Biological Therapy, 2015, 15, 495-504.	1.4	140
5	Mesenchymal stem/stromal cell extracellular vesicles: From active principle to next generation drug delivery system. Journal of Controlled Release, 2017, 262, 104-117.	4.8	121
6	Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Research and Therapy, 2014, 5, 7.	2.4	108
7	First Characterization of Human Amniotic Fluid Stem Cell Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential. Stem Cells Translational Medicine, 2017, 6, 1340-1355.	1.6	104
8	Mesenchymal stromal cells primed with <scp>P</scp> aclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemiaâ€bearing mice. British Journal of Haematology, 2013, 160, 766-778.	1.2	67
9	Angiogenic and anti-inflammatory properties of micro-fragmented fat tissue and its derived mesenchymal stromal cells. Vascular Cell, 2016, 8, 3.	0.2	66
10	Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts. Stem Cell Research and Therapy, 2017, 8, 53.	2.4	57
11	Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts. Stem Cell Research and Therapy, 2015, 6, 194.	2.4	56
12	Equine Amniotic Microvesicles and Their Anti-Inflammatory Potential in a Tenocyte Model In Vitro. Stem Cells and Development, 2016, 25, 610-621.	1.1	46
13	Apoptotic cell death in canine hair follicle. Histology and Histopathology, 2005, 20, 1-9.	0.5	46
14	In Vitro Anticancer Activity of Extracellular Vesicles (EVs) Secreted by Gingival Mesenchymal Stromal Cells Primed with Paclitaxel. Pharmaceutics, 2019, 11, 61.	2.0	44
15	Gemcitabine-releasing mesenchymal stromal cells inhibit inÂvitro proliferation of human pancreatic carcinoma cells. Cytotherapy, 2015, 17, 1687-1695.	0.3	43
16	Membrane vesicles mediate pro-angiogenic activity of equine adipose-derived mesenchymal stromal cells. Veterinary Journal, 2014, 202, 361-366.	0.6	42
17	Long-Lasting Anti-Inflammatory Activity of Human Microfragmented Adipose Tissue. Stem Cells International, 2019, 2019, 1-13.	1.2	42
18	Flow cytometric characterization of culture expanded multipotent mesenchymal stromal cells (MSCs) from horse adipose tissue: Towards the definition of minimal stemness criteria. Veterinary Immunology and Immunopathology, 2011, 144, 499-506.	0.5	41

#	Article	IF	Citations
19	Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (GinPa-MSCs) loaded with paclitaxel. Expert Opinion on Drug Delivery, 2016, 13, 789-798.	2.4	39
20	Paclitaxelâ€releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system. Hematological Oncology, 2017, 35, 693-702.	0.8	39
21	Proteomic Profiling of Retinoblastoma-Derived Exosomes Reveals Potential Biomarkers of Vitreous Seeding. Cancers, 2020, 12, 1555.	1.7	33
22	Proteomic Analysis of Neuroblastomaâ€Derived Exosomes: New Insights into a Metastatic Signature. Proteomics, 2017, 17, 1600430.	1.3	32
23	Intra-Articular Administration of Autologous Micro-Fragmented Adipose Tissue in Dogs with Spontaneous Osteoarthritis: Safety, Feasibility, and Clinical Outcomes. Stem Cells Translational Medicine, 2018, 7, 819-828.	1.6	32
24	Neuroblastomaâ€secreted exosomes carrying miRâ€375 promote osteogenic differentiation of boneâ€marrow mesenchymal stromal cells. Journal of Extracellular Vesicles, 2020, 9, 1774144.	5.5	31
25	Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model. Journal of Experimental and Clinical Cancer Research, 2015, 34, 82.	3.5	30
26	Leptin receptor expression and in vitro leptin actions on prostaglandin release and nitric oxide synthase activity in the rabbit oviduct. Journal of Endocrinology, 2005, 185, 319-325.	1.2	27
27	Transcriptomic Characterization of Cow, Donkey and Goat Milk Extracellular Vesicles Reveals Their Anti-Inflammatory and Immunomodulatory Potential. International Journal of Molecular Sciences, 2021, 22, 12759.	1.8	27
28	Occurrence of parasites of the genus Eustrongylides spp. (Nematoda: Dioctophymatidae) in fish caught in Trasimeno lake, Italy. Italian Journal of Food Safety, 2016, 5, 6130.	0.5	26
29	Fluorescent Immortalized Human Adipose Derived Stromal Cells (hASCs-TS/GFP+) for Studying Cell Drug Delivery Mediated by Microvesicles. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1578-1585.	0.9	23
30	Expression of mesenchymal stem cell marker CD90 on dermal sheath cells of the anagen hair follicle in canine species. European Journal of Histochemistry, 2009, 53, 19.	0.6	22
31	Dietary supplementation with olive mill wastewaters induces modifications on chicken jejunum epithelial cell transcriptome and modulates jejunum morphology. BMC Genomics, 2018, 19, 576.	1.2	22
32	CD34 glycoprotein identifies putative stem cells located in the isthmic region of canine hair follicles. Veterinary Dermatology, 2006, 17, 244-251.	0.4	21
33	Immunohistochemical localization of CB1 receptor in canine salivary glands. Veterinary Research Communications, 2010, 34, 9-12.	0.6	21
34	Identification of cannabinoid type 1 receptor in dog hair follicles. Acta Histochemica, 2012, 114, 68-71.	0.9	21
35	Equine Adipose-Derived Mesenchymal Stromal Cells Release Extracellular Vesicles Enclosing Different Subsets of Small RNAs. Stem Cells International, 2019, 2019, 1-12.	1.2	21
36	Ultrastructural morphology of equine adipose-derived mesenchymal stem cells. Histology and Histopathology, 2010, 25, 1277-85.	0.5	21

#	Article	IF	CITATIONS
37	Receptors for leptin and estrogen in the subcommissural organ of rabbits are differentially modulated by fasting. Brain Research, 2006, 1124, 62-69.	1.1	20
38	Identification of orexin A- and orexin type 2 receptor-positive cells in the gastrointestinal tract of neonatal dogs. European Journal of Histochemistry, 2008, 52, 229.	0.6	20
39	Anti-Inflammatory Potential of Cow, Donkey and Goat Milk Extracellular Vesicles as Revealed by Metabolomic Profile. Nutrients, 2020, 12, 2908.	1.7	19
40	Imaging extracelluar vesicles by transmission electron microscopy: Coping with technical hurdles and morphological interpretation. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129648.	1.1	19
41	Immunohistochemical identification and localization of orexin A and orexin type 2 receptor in the horse gastrointestinal tract. Research in Veterinary Science, 2009, 86, 189-193.	0.9	18
42	Immunohistochemical detection of the orexin system in the placenta of cats. Research in Veterinary Science, 2012, 92, 362-365.	0.9	18
43	Effect of canine mesenchymal stromal cells loaded with paclitaxel on growth of canine glioma and human glioblastoma cell lines. Veterinary Journal, 2017, 223, 41-47.	0.6	18
44	Ultrastructural characteristics and immune profile of equine MSCs from fetal adnexa. Reproduction, 2017, 154, 509-519.	1.1	18
45	Expression profiles of exosomal miRNAs isolated from plasma of patients with desmoplastic small round cell tumor. Epigenomics, 2019, 11, 489-500.	1.0	16
46	Vasoactive Peptides in the Luteolytic Process Activated by PGF2alpha in Pseudopregnant Rabbits at Different Luteal Stages1. Biology of Reproduction, 2007, 77, 156-164.	1.2	14
47	Investigation of the antibiotic resistance and biofilm formation of Staphylococcus pseudintermedius strains isolated from canine pyoderma. Veterinaria Italiana, 2017, 53, 289-296.	0.5	14
48	Immunohistochemical evaluation of intermediate filament nestin in dog hair follicles. Histology and Histopathology, 2008, 23, 1035-41.	0.5	12
49	Expression of mesenchymal stem cell marker CD90 on dermal sheath cells of the anagen hair follicle in canine species. European Journal of Histochemistry, 2009, 53, 159-66.	0.6	11
50	Localization of the orexin system in the gastrointestinal tract of fallow deer. Acta Histochemica, 2012, 114, 74-78.	0.9	11
51	Evaluation of storage conditions on equine adipose tissue-derived multipotent mesenchymal stromal cells. Veterinary Journal, 2014, 200, 339-342.	0.6	11
52	Amniotic fluid stem cellâ€derived extracellular vesicles are independent metabolic units capable of modulating inflammasome activation in THPâ€1 cells. FASEB Journal, 2022, 36, e22218.	0.2	11
53	Immunohistochemical Detection of Virulence-associated Rhodococcus equi Antigens in Pulmonary and Intestinal Lesions in Horses. Journal of Comparative Pathology, 2000, 123, 186-189.	0.1	10
54	Immunohistochemical distribution of leptin receptor in the major salivary glands of horses. Research in Veterinary Science, 2012, 93, 1116-1118.	0.9	10

#	Article	IF	CITATIONS
55	Horse adipose-derived mesenchymal stromal cells constitutively produce membrane vesicles: a morphological study. Histology and Histopathology, 2015, 30, 549-57.	0.5	9
56	Shedding light on cashmere goat hair follicle biology: from morphology analyses to transcriptomic landascape. BMC Genomics, 2020, 21, 458.	1.2	8
57	Leptin receptor is expressed by epidermis and skin appendages in dog. Acta Histochemica, 2014, 116, 1270-1275.	0.9	7
58	Establishment, characterization and long-term culture of human endocrine pancreas-derived microvascular endothelial cells. Cytotherapy, 2017, 19, 141-152.	0.3	6
59	A Method for Isolating and Characterizing Mesenchymal Stromal Cellâ€derived Extracellular Vesicles. Current Protocols in Stem Cell Biology, 2018, 46, e55.	3.0	6
60	Immunolocalization of leptin and its receptor in the pancreas of the horse. Acta Histochemica, 2013, 115, 757-760.	0.9	5
61	Could hypoxia influence basic biological properties and ultrastructural features of adult canine mesenchymal stem /stromal cells?. Veterinary Research Communications, 2018, 42, 297-308.	0.6	4
62	Glycoconjugates in Sheep Buccal Glands Investigated by Conventional and Lectin Histochemistry. Journal of Applied Animal Research, 2008, 34, 49-54.	0.4	3
63	Sympathetic innervation of the suprasesamoidean region of the deep digital flexor tendon in the forelimbs of horses. Veterinary Journal, 2015, 205, 413-416.	0.6	3
64	Immunohistochemical evidence of leptin and its receptor in the carpal glands of domestic pigs and wild boar. Veterinary Dermatology, 2015, 26, 46-e14.	0.4	2
65	PDTM-09. DIFFUSE INTRINSIC PONTINE GLIOMA AND PEDIATRIC GLIOBLASTOMA DERIVED-EXOSOMES HAVE SPECIFIC ONCOGENIC SIGNATURES. Neuro-Oncology, 2018, 20, vi205-vi205.	0.6	1
66	Ultrastructural Details of Tetrathyridia of <i>Mesocestoides</i> spp. from a Naturally Infected Dog. Journal of Applied Animal Research, 2009, 36, 45-48.	0.4	0
67	Sympathetic Innervation and Adrenergic Receptors in Equine Deep Digital Flexor Tendinopathy: Preliminary Results. Journal of Comparative Pathology, 2018, 163, 33-37.	0.1	0
68	Differential Expression Pattern of Retroviral Envelope Gene in the Equine Placenta. Frontiers in Veterinary Science, 2021, 8, 693416.	0.9	0
69	HGG-19. IDENTIFICATION OF NOVEL SUBGROUP-SPECIFIC miRNA EXOSOMAL BIOMARKERS IN PEDIATRIC HIGH-GRADE GLIOMAS. Neuro-Oncology, 2020, 22, iii347-iii347.	0.6	0
70	HGG-16. EXOSOME-MEDIATED INTER-CLONAL INTERACTIONS IN PEDIATRIC GBM AND DIPG. Neuro-Oncology, 2020, 22, iii346-iii346.	0.6	0