
Mohammad Ali Darabi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3622365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The use of organ-on-a-chip methods for testing of nanomaterials. , 2022, , 147-161.		1
2	Graphene Quantum Dots for Fluorescent Labeling of Gelatinâ€Based Shearâ€Thinning Hydrogels. Advanced NanoBiomed Research, 2021, 1, 2000113.	3.6	6
3	Graphene Quantum Dots for Fluorescent Labeling of Gelatinâ€Based Shearâ€Thinning Hydrogels. Advanced NanoBiomed Research, 2021, 1, 2170073.	3.6	0
4	Healthy and diseased <i>in vitro</i> models of vascular systems. Lab on A Chip, 2021, 21, 641-659.	6.0	18
5	Advances in biomedical applications of self-healing hydrogels. Materials Chemistry Frontiers, 2021, 5, 4368-4400.	5.9	51
6	Microphysiological Systems: Next Generation Systems for Assessing Toxicity and Therapeutic Effects of Nanomaterials. Small Methods, 2020, 4, 1900589.	8.6	37
7	Non-transdermal microneedles for advanced drug delivery. Advanced Drug Delivery Reviews, 2020, 165-166, 41-59.	13.7	80
8	An Alkaline Based Method for Generating Crystalline, Strong, and Shape Memory Polyvinyl Alcohol Biomaterials. Advanced Science, 2020, 7, 1902740.	11.2	73
9	Hydrogels from natural egg white with extraordinary stretchability, direct-writing 3D printability and self-healing for fabrication of electronic sensors and actuators. Journal of Materials Chemistry A, 2019, 7, 24626-24640.	10.3	68
10	Spine Intervention—An Update on Injectable Biomaterials. Canadian Association of Radiologists Journal, 2019, 70, 37-43.	2.0	8
11	An injectable conductive Gelatin-PANI hydrogel system serves as a promising carrier to deliver BMSCs for Parkinson's disease treatment. Materials Science and Engineering C, 2019, 100, 584-597.	7.3	35
12	The Dynamic Cycle of Future Personalized and Regenerative Therapy. Journal of Craniofacial Surgery, 2019, 30, 623-625.	0.7	17
13	Hall of Fame Article: Minimally Invasive and Regenerative Therapeutics (Adv. Mater. 1/2019). Advanced Materials, 2019, 31, 1970005.	21.0	2
14	Minimally Invasive and Regenerative Therapeutics. Advanced Materials, 2019, 31, e1804041.	21.0	112
15	Polyaniline nanoflowers grown on vibration-isolator-mimetic polyurethane nanofibers for flexible supercapacitors with prolonged cycle life. Journal of Materials Chemistry A, 2017, 5, 7933-7943.	10.3	45
16	Hydrogels: Skinâ€Inspired Multifunctional Autonomicâ€Intrinsic Conductive Selfâ€Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability (Adv. Mater. 31/2017). Advanced Materials, 2017, 29, .	21.0	5
17	Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing. International Journal of Nanomedicine, 2016, 11, 2543.	6.7	29
18	Flexible Electrode Design: Fabrication of Freestanding Polyaniline-Based Composite Films for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 11379-11389.	8.0	78

#	Article	IF	CITATIONS
19	Highly Flexible and Resilient Elastin Hybrid Cryogels with Shape Memory, Injectability, Conductivity, and Magnetic Responsive Properties. Advanced Materials, 2016, 28, 7758-7767.	21.0	149
20	A novel nano-silver coated and hydrogel-impregnated polyurethane nanofibrous mesh for ventral hernia repair. RSC Advances, 2016, 6, 90571-90578.	3.6	20
21	Gum Sensor: A Stretchable, Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum Membrane. ACS Applied Materials & Interfaces, 2015, 7, 26195-26205.	8.0	85
22	Flexible Cellulose-Based Films of Polyaniline–Graphene–Silver Nanowire for High-Performance Supercapacitors. Journal of Nanotechnology in Engineering and Medicine, 2015, 6, .	0.8	12