Patricia Gonzalez Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3622066/publications.pdf

Version: 2024-02-01

20 papers

991 citations

567281 15 h-index 713466 21 g-index

22 all docs 22 docs citations

times ranked

22

1437 citing authors

#	Article	IF	CITATIONS
1	Disruption of mitochondrial complex I induces progressive parkinsonism. Nature, 2021, 599, 650-656.	27.8	247
2	Neurotransmitter Modulation of Carotid Body Germinal Niche. International Journal of Molecular Sciences, 2020, 21, 8231.	4.1	5
3	Selective neuronal vulnerability in Parkinson's disease. Progress in Brain Research, 2020, 252, 61-89.	1.4	43
4	Expression Pattern of Aquaporin 1 and Aquaporin 3 in Melanocytic and Nonmelanocytic Skin Tumors. American Journal of Clinical Pathology, 2019, 152, 446-457.	0.7	7
5	Fast neurogenesis from carotid body quiescent neuroblasts accelerates adaptation to hypoxia. EMBO Reports, $2018,19,.$	4.5	25
6	Acute O2 Sensing: Role of Coenzyme QH2/Q Ratio and Mitochondrial ROS Compartmentalization. Cell Metabolism, 2018, 28, 145-158.e4.	16.2	75
7	Highly Efficient Neural Conversion of Human Pluripotent Stem Cells in Adherent and Animal-Free Conditions. Stem Cells Translational Medicine, 2017, 6, 1217-1226.	3.3	37
8	Redox signaling in acute oxygen sensing. Redox Biology, 2017, 12, 908-915.	9.0	35
9	Genetic Rescue of Mitochondrial and Skeletal Muscle Impairment in an Induced Pluripotent Stem Cells Model of Coenzyme Q10 Deficiency. Stem Cells, 2017, 35, 1687-1703.	3.2	24
10	Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. American Journal of Physiology - Cell Physiology, 2016, 310, C629-C642.	4.6	99
11	Orail and TRPC1 Proteins Co-localize with CaV1.2 Channels to Form a Signal Complex in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2016, 291, 21148-21159.	3.4	33
12	Selective accumulation of biotin in arterial chemoreceptors: requirement for carotid body exocytotic dopamine secretion. Journal of Physiology, 2016, 594, 7229-7248.	2.9	20
13	Oxygen-sensing by arterial chemoreceptors: Mechanisms and medical translation. Molecular Aspects of Medicine, 2016, 47-48, 90-108.	6.4	50
14	Hypoxic induction of Tâ€type Ca ²⁺ channels in rat cardiac myocytes: role of HIFâ€1α and RhoA/ROCK signalling. Journal of Physiology, 2015, 593, 4729-4745.	2.9	23
15	Oxygen Sensing by Arterial Chemoreceptors Depends on Mitochondrial Complex I Signaling. Cell Metabolism, 2015, 22, 825-837.	16.2	180
16	Glucose sensing by carotid body glomus cells: potential implications in disease. Frontiers in Physiology, 2014, 5, 398.	2.8	34
17	Low-dose combination of Rho kinase and L-type Ca2+ channel antagonists for selective inhibition of depolarization-induced sustained arterial contraction. European Journal of Pharmacology, 2014, 732, 130-138.	3.5	6
18	A New Metabotropic Role for L-type Ca2+ Channels in Vascular Smooth Muscle Contraction. Current Vascular Pharmacology, 2013, 11, 490-496.	1.7	10

#	Article	lF	CITATIONS
19	Tungstate activates BK channels in a \hat{I}^2 subunit- and Mg2+-dependent manner: relevance for arterial vasodilatation. Cardiovascular Research, 2012, 95, 29-38.	3.8	12
20	Short Communication: Genetic Ablation of L-Type Ca ²⁺ Channels Abolishes Depolarization-Induced Ca ²⁺ Release in Arterial Smooth Muscle. Circulation Research, 2010, 106, 1285-1289.	4.5	25