Mahmut Dirican

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3621217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering Reports, 2019, 136, 27-46.	31.8	311
2	Li _{0.33} La _{0.557} TiO ₃ ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry A, 2018, 6, 4279-4285.	10.3	280
3	Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. Journal of Membrane Science, 2014, 456, 57-65.	8.2	180
4	Carbon-Confined SnO ₂ -Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material. ACS Applied Materials & Interfaces, 2015, 7, 18387-18396.	8.0	138
5	Interlayer design based on carbon materials for lithium–sulfur batteries: a review. Journal of Materials Chemistry A, 2020, 8, 10709-10735.	10.3	128
6	A novel bi-functional double-layer rGO–PVDF/PVDF composite nanofiber membrane separator with enhanced thermal stability and effective polysulfide inhibition for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 15096-15104.	10.3	121
7	Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochimica Acta, 2014, 133, 501-508.	5.2	119
8	Flexible polyaniline-carbon nanofiber supercapacitor electrodes. Journal of Energy Storage, 2019, 24, 100766.	8.1	115
9	Garnet-rich composite solid electrolytes for dendrite-free, high-rate, solid-state lithium-metal batteries. Energy Storage Materials, 2020, 26, 448-456.	18.0	104
10	Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries. Energy Storage Materials, 2019, 17, 220-225.	18.0	98
11	Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries. Journal of Power Sources, 2014, 264, 240-247.	7.8	96
12	Ultrafine and polar ZrO2-inlaid porous nitrogen-doped carbon nanofiber as efficient polysulfide absorbent for high-performance lithium-sulfur batteries with long lifespan. Chemical Engineering Journal, 2018, 349, 376-387.	12.7	91
13	Biomass-derived porous carbon modified glass fiber separator as polysulfide reservoir for Li-S batteries. Journal of Colloid and Interface Science, 2018, 513, 231-239.	9.4	86
14	Glass fiber separatorÂcoated by porous carbon nanofiber derived fromÂimmiscible PAN/PMMA forÂhigh-performance lithium-sulfur batteries. Journal of Membrane Science, 2018, 552, 31-42.	8.2	83
15	A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 5597-5605.	10.3	78
16	Polyaniline/MnO2/porous carbon nanofiber electrodes for supercapacitors. Journal of Electroanalytical Chemistry, 2020, 861, 113995.	3.8	77
17	Sulfur gradient-distributed CNF composite: a self-inhibiting cathode for binder-free lithium–sulfur batteries. Chemical Communications, 2014, 50, 10277-10280.	4.1	75
18	Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium–ion batteries. Flectrochimica Acta, 2015, 169, 52-60.	5.2	75

MAHMUT DIRICAN

#	Article	IF	CITATIONS
19	Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. Journal of Power Sources, 2015, 273, 502-510.	7.8	72
20	Fe ₃ O ₄ /Fe ₂ O ₃ /Fe nanoparticles anchored on N-doped hierarchically porous carbon nanospheres as a high-efficiency ORR electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 2764-2774.	10.3	71
21	Chamber-confined silicon–carbon nanofiber composites for prolonged cycling life of Li-ion batteries. Nanoscale, 2014, 6, 7489-7495.	5.6	60
22	High-Performance 3-D Fiber Network Composite Electrolyte Enabled with Li-Ion Conducting Nanofibers and Amorphous PEO-Based Cross-Linked Polymer for Ambient All-Solid-State Lithium-Metal Batteries. Advanced Fiber Materials, 2019, 1, 46-60.	16.1	59
23	Hollow Co3O4-x nanoparticles decorated N-doped porous carbon prepared by one-step pyrolysis as an efficient ORR electrocatalyst for rechargeable Zn-air batteries. Carbon, 2021, 181, 87-98.	10.3	56
24	Free-standing polyaniline–porous carbon nanofiber electrodes for symmetric and asymmetric supercapacitors. RSC Advances, 2014, 4, 59427-59435.	3.6	53
25	Advanced Zinc Anode with Nitrogenâ€Doping Interface Induced by Plasma Surface Treatment. Advanced Science, 2022, 9, e2103952.	11.2	51
26	In Situ Polymerization of Nanostructured Conductive Polymer on 3D Sulfur/Carbon Nanofiber Composite Network as Cathode for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2018, 5, 1701598.	3.7	50
27	ZnO-assisted synthesis of lignin-based ultra-fine microporous carbon nanofibers for supercapacitors. Journal of Colloid and Interface Science, 2021, 586, 412-422.	9.4	48
28	Reduced Graphene Oxide-Incorporated SnSb@CNF Composites as Anodes for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 9696-9703.	8.0	46
29	Highly Transparent and Colorless Nanocellulose/Polyimide Substrates with Enhanced Thermal and Mechanical Properties for Flexible OLED Displays. Advanced Materials Interfaces, 2020, 7, 2000928.	3.7	43
30	Carbon-Confined PVA-Derived Silicon/Silica/Carbon Nanofiber Composites as Anode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A2197-A2203.	2.9	42
31	Electrospun Kraft Lignin/Cellulose Acetate-Derived Nanocarbon Network as an Anode for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 44368-44375.	8.0	41
32	Effect of reduced graphene oxide reduction degree on the performance of polysulfide rejection in lithium-sulfur batteries. Carbon, 2018, 126, 594-600.	10.3	40
33	SnS hollow nanofibers as anode materials for sodium-ion batteries with high capacity and ultra-long cycling stability. Chemical Communications, 2019, 55, 505-508.	4.1	40
34	Centrifugally-spun tin-containing carbon nanofibers as anode material for lithium-ion batteries. Journal of Materials Science, 2015, 50, 1094-1102.	3.7	34
35	High-performance SnSb@rGO@CMF composites as anode material for sodium-ion batteries through high-speed centrifugal spinning. Journal of Alloys and Compounds, 2018, 752, 296-302.	5.5	33
36	Carbon black-based porous sub-micron carbon fibers for flexible supercapacitors. Applied Surface Science, 2021, 537, 147914.	6.1	33

MAHMUT DIRICAN

#	Article	IF	CITATIONS
37	Binding Conductive Ink Initiatively and Strongly: Transparent and Thermally Stable Cellulose Nanopaper as a Promising Substrate for Flexible Electronics. ACS Applied Materials & Interfaces, 2019, 11, 20281-20290.	8.0	31
38	Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels. Carbohydrate Polymers, 2021, 273, 118539.	10.2	30
39	Lithium-substituted sodium layered transition metal oxide fibers as cathodes for sodium-ion batteries. Energy Storage Materials, 2015, 1, 74-81.	18.0	29
40	Rational design of meso-/micro-pores for enhancing ion transportation in highly-porous carbon nanofibers used as electrode for supercapacitors. Applied Surface Science, 2021, 545, 148933.	6.1	29
41	Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries. Journal of Power Sources, 2016, 327, 333-339.	7.8	26
42	Centrifugally Spun SnO ₂ Microfibers Composed of Interconnected Nanoparticles as the Anode in Sodiumâ€ion Batteries. ChemElectroChem, 2015, 2, 1947-1956.	3.4	25
43	Interconnected cathode-electrolyte double-layer enabling continuous Li-ion conduction throughout solid-state Li-S battery. Energy Storage Materials, 2022, 44, 136-144.	18.0	24
44	Highly Transparent, Thermally Stable, and Mechanically Robust Hybrid Cellulose-Nanofiber/Polymer Substrates for the Electrodes of Flexible Solar Cells. ACS Applied Energy Materials, 2020, 3, 785-793.	5.1	23
45	Disintegrable, transparent and mechanically robust high-performance antimony tin oxide/nanocellulose/polyvinyl alcohol thermal insulation films. Carbohydrate Polymers, 2021, 266, 118175.	10.2	23
46	Polyacrylonitrile Nanofiber-Reinforced Flexible Single-Ion Conducting Polymer Electrolyte for High-Performance, Room-Temperature All-Solid-State Li-Metal Batteries. Advanced Fiber Materials, 2022, 4, 532-546.	16.1	23
47	SiO ₂ -confined silicon/carbon nanofiber composites as an anode for lithium-ion batteries. RSC Advances, 2015, 5, 34744-34751.	3.6	20
48	Rationally designed carbon coated ZnSnS3 nano cubes as high-performance anode for advanced sodium-ion batteries. Electrochimica Acta, 2018, 292, 646-654.	5.2	18
49	Carbon-coated CoS@rGO anode material with enhanced cyclic stability for sodium storage. Materials Letters, 2018, 233, 158-161.	2.6	17
50	Carbon-enhanced centrifugally-spun SnSb/carbon microfiber composite as advanced anode material for sodium-ion battery. Journal of Colloid and Interface Science, 2019, 536, 655-663.	9.4	17
51	Highly Foldable, Super-Sensitive, and Transparent Nanocellulose/Ceramic/Polymer Cover Windows for Flexible OLED Displays. ACS Applied Materials & Interfaces, 2022, 14, 16658-16668.	8.0	17
52	Hybrid Carbon Nanotube Fabrics with Sacrificial Nanofibers for Flexible High Performance Lithium-Ion Battery Anodes. Journal of the Electrochemical Society, 2019, 166, A473-A479.	2.9	16
53	Low heat yielding electrospun phosphenanthrene oxide loaded polyacrylonitrile composite separators for safer high energy density lithium-ion batteries Applied Materials Today, 2020, 20, 100675.	4.3	16
54	Fabrication and electrochemical behavior study of nano-fibrous sodium titanate composite. Materials Letters, 2017, 188, 176-179.	2.6	15

MAHMUT DIRICAN

#	Article	IF	CITATIONS
55	Advanced ZnSnS ₃ @rGO Anode Material for Superior Sodiumâ€ion and Lithiumâ€ion Storage with Ultralong Cycle Life. ChemElectroChem, 2019, 6, 1183-1191.	3.4	15
56	Centrifugal Spinning—High Rate Production of Nanofibers. , 2019, , 321-338.		14
57	Iron/manganese oxide-decorated GO-regulated highly porous polyacrylonitrile hollow fiber membrane and its excellent methylene blue-removing performance. Journal of Membrane Science, 2020, 607, 118180.	8.2	12
58	Highly Thermally Stable, Green Solvent Disintegrable, and Recyclable Polymer Substrates for Flexible Electronics. Macromolecular Rapid Communications, 2020, 41, 2000292.	3.9	10
59	Root-whisker structured 3D CNTs-CNFs network based on coaxial electrospinning: A free-standing anode in lithium-ion batteries. Journal of Alloys and Compounds, 2021, 863, 158481.	5.5	10
60	Porous carbon nanosheets derived from expanded graphite for supercapacitors and sodium-ion batteries. Journal of Materials Science, 2020, 55, 16323-16333.	3.7	9
61	Highly Soluble and Stable, High Release Rate Nanocellulose Codrug Delivery System of Curcumin and AuNPs for Dual Chemo-Photothermal Therapy. Biomacromolecules, 2022, 23, 960-971.	5.4	9
62	Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition. Journal of Materials Science, 2016, 51, 4549-4558.	3.7	8
63	Fabrication, structure and supercapacitance of flexible porous carbon nanobelt webs with enhanced inter-fiber connection. Applied Surface Science, 2021, 543, 148783.	6.1	5