Sukanya Jeennor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3620910/publications.pdf

Version: 2024-02-01

15	178	7	14
papers	citations	h-index	g-index
15	15	15	169
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Comparative fatty acid profiling ofMucor rouxiiunder different stress conditions. FEMS Microbiology Letters, 2006, 259, 60-66.	1.8	36
2	Metabolic engineering of long chain-polyunsaturated fatty acid biosynthetic pathway in oleaginous fungus for dihomo-gamma linolenic acid production. Journal of Biotechnology, 2016, 218, 85-93.	3.8	31
3	Genome Characterization of Oleaginous Aspergillus oryzae BCC7051: A Potential Fungal-Based Platform for Lipid Production. Current Microbiology, 2018, 75, 57-70.	2.2	30
4	Morphologically engineered strain of Aspergillus oryzae as a cell chassis for production development of functional lipids. Gene, 2019, 718, 144073.	2.2	13
5	Reengineering lipid biosynthetic pathways of Aspergillus oryzae for enhanced production of \hat{I}^3 -linolenic acid and dihomo- \hat{I}^3 -linolenic acid. Gene, 2019, 706, 106-114.	2.2	13
6	Diacylglycerol acyltransferase 2 of Mortierella alpina with specificity on long-chain polyunsaturated fatty acids: A potential tool for reconstituting lipids with nutritional value. Journal of Biotechnology, 2017, 263, 45-51.	3.8	9
7	Functional Characterization of Novel U6 RNA Polymerase III Promoters: Their Implication for CRISPR-Cas9-Mediated Gene Editing in Aspergillus oryzae. Current Microbiology, 2019, 76, 1443-1451.	2.2	9
8	Significance of two intracellular triacylglycerol lipases of Aspergillus oryzae in lipid mobilization: A perspective in industrial implication for microbial lipid production. Gene, 2021, 793, 145745.	2.2	8
9	Novel pentose-regulated promoter of Aspergillus oryzae with application in controlling heterologous gene expression. Biotechnology Reports (Amsterdam, Netherlands), 2022, 33, e00695.	4.4	7
10	Novel elongase of Pythium sp. with high specificity on \hat{i} 6-18C desaturated fatty acids. Biochemical and Biophysical Research Communications, 2014, 450, 507-512.	2.1	6
11	Promoter exchange of the cryptic nonribosomal peptide synthetase gene for oligopeptide production in Aspergillus oryzae. Journal of Microbiology, 2021, , 1.	2.8	5
12	The codon-optimized î"6-desaturase gene of Pythium sp. as an empowering tool for engineering n3/n6 polyunsaturated fatty acid biosynthesis. BMC Biotechnology, 2015, 15, 82.	3.3	4
13	Exploring differential traits of lipid-producing stages of the wild type and morphologically engineered strain of Aspergillus oryzae by comparative kinetic modeling. World Journal of Microbiology and Biotechnology, 2020, 36, 183.	3.6	4
14	Systematic development of biomass overproducing Scheffersomyces stipitis for high-cell-density fermentations. Synthetic and Systems Biotechnology, 2016, 1, 47-55.	3.7	3
15	The Exploring Functional Role of Ammonium Transporters of Aspergillus oryzae in Nitrogen Metabolism: Challenges towards Cell Biomass Production. International Journal of Molecular Sciences, 2022, 23, 7567.	4.1	O