F Stuart Chapin Iii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3620907/publications.pdf

Version: 2024-02-01

407 papers

110,782 citations

132 h-index 318 g-index

417 all docs

417 docs citations

times ranked

417

69358 citing authors

#	Article	IF	CITATIONS
1	Global Consequences of Land Use. Science, 2005, 309, 570-574.	12.6	9,451
2	A safe operating space for humanity. Nature, 2009, 461, 472-475.	27.8	8,638
3	Global Biodiversity Scenarios for the Year 2100 . Science, 2000, 287, 1770-1774.	12.6	7,077
4	EFFECTS OF BIODIVERSITY ON ECOSYSTEM FUNCTIONING: A CONSENSUS OF CURRENT KNOWLEDGE. Ecological Monographs, 2005, 75, 3-35.	5.4	5,856
5	Resource Availability and Plant Antiherbivore Defense. Science, 1985, 230, 895-899.	12.6	3,410
6	The Mineral Nutrition of Wild Plants. Annual Review of Ecology, Evolution, and Systematics, 1980, 11, 233-260.	6.7	3,388
7	Consequences of changing biodiversity. Nature, 2000, 405, 234-242.	27.8	3,209
8	Carbon/Nutrient Balance of Boreal Plants in Relation to Vertebrate Herbivory. Oikos, 1983, 40, 357.	2.7	2,062
9	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	9.5	2,002
10	Observational Evidence of Recent Change in the Northern High-Latitude Environment. Climatic Change, 2000, 46, 159-207.	3.6	1,690
11	The Mineral Nutrition of Wild Plants Revisited: A Re-evaluation of Processes and Patterns. Advances in Ecological Research, 1999, , 1-67.	2.7	1,675
12	Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions. Climatic Change, 2005, 72, 251-298.	3.6	1,219
13	Role of Land-Surface Changes in Arctic Summer Warming. Science, 2005, 310, 657-660.	12.6	1,186
14	Responses of Arctic Tundra to Experimental and Observed Changes in Climate. Ecology, 1995, 76, 694-711.	3.2	1,168
15	Plant Responses to Multiple Environmental Factors. BioScience, 1987, 37, 49-57.	4.9	1,109
16	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
17	Biodiversity Loss Threatens Human Well-Being. PLoS Biology, 2006, 4, e277.	5.6	984
18	Scaling environmental change through the communityâ€level: a traitâ€based responseâ€andâ€effect framework for plants. Global Change Biology, 2008, 14, 1125-1140.	9.5	981

#	Article	IF	Citations
19	Biotic Control over the Functioning of Ecosystems. Science, 1997, 277, 500-504.	12.6	948
20	Reconciling Carbon-cycle Concepts, Terminology, and Methods. Ecosystems, 2006, 9, 1041-1050.	3.4	904
21	Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature, 2004, 431, 440-443.	27.8	898
22	Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 2006, 443, 71-75.	27.8	890
23	Mechanisms of Primary Succession Following Deglaciation at Glacier Bay, Alaska. Ecological Monographs, 1994, 64, 149-175.	5.4	878
24	CLIMATE CHANGE: Permafrost and the Global Carbon Budget. Science, 2006, 312, 1612-1613.	12.6	861
25	Principles of Terrestrial Ecosystem Ecology. , 2011, , .		860
26	The Impact of Boreal Forest Fire on Climate Warming. Science, 2006, 314, 1130-1132.	12.6	765
27	Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends in Ecology and Evolution, 2010, 25, 241-249.	8.7	744
28	Evolution of Suites of Traits in Response to Environmental Stress. American Naturalist, 1993, 142, S78-S92.	2.1	737
29	An index to assess the health and benefits of the global ocean. Nature, 2012, 488, 615-620.	27.8	736
30	The Nature of Nutrient Limitation in Plant Communities. American Naturalist, 1986, 127, 48-58.	2.1	676
31	Integrated Responses of Plants to Stress. BioScience, 1991, 41, 29-36.	4.9	656
32	Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature, 1993, 361, 150-153.	27.8	653
33	Climate-induced boreal forest change: Predictions versus current observations. Global and Planetary Change, 2007, 56, 274-296.	3.5	619
34	Seasonal Changes in Nitrogen and Phosphorus Fractions and Autumn Retranslocation in Evergreen and Deciduous Taiga Trees. Ecology, 1983, 64, 376-391.	3.2	612
35	Global Warming and Terrestrial Ecosystems: A Conceptual Framework for Analysis. BioScience, 2000, 50, 871.	4.9	599
36	Individualistic Growth Response of Tundra Plant Species to Environmental Manipulations in the Field. Ecology, 1985, 66, 564-576.	3.2	576

#	Article	IF	Citations
37	Snow–Shrub Interactions in Arctic Tundra: A Hypothesis with Climatic Implications. Journal of Climate, 2001, 14, 336-344.	3.2	512
38	Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology, 2000, 6, 211-223.	9.5	488
39	Temperature and vegetation seasonality diminishment over northern lands. Nature Climate Change, 2013, 3, 581-586.	18.8	485
40	Social norms as solutions. Science, 2016, 354, 42-43.	12.6	476
41	Production: Biomass Relationships and Element Cycling in Contrasting Arctic Vegetation Types. Ecological Monographs, 1991, 61, 1-31.	5.4	463
42	Plant functional types as predictors of transient responses of arctic vegetation to global change. Journal of Vegetation Science, 1996, 7, 347-358.	2.2	461
43	Response to Fertilization by Various Plant Growth Forms in an Alaskan Tundra: Nutrient Accumulation and Growth. Ecology, 1980, 61, 662-675.	3.2	457
44	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
45	Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Global Change Biology, 2010, 16, 1281-1295.	9.5	448
46	The fate of carbon in grasslands under carbon dioxide enrichment. Nature, 1997, 388, 576-579.	27.8	444
47	The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 2013, 11, 474-482.	4.0	433
48	Reconnecting to the Biosphere. Ambio, 2011, 40, 719-38.	5.5	420
49	Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4015-4020.	7.1	419
50	Global Change and the Carbon Balance of Arctic Ecosystems. BioScience, 1992, 42, 433-441.	4.9	416
51	Functional diversity revealed by removal experiments. Trends in Ecology and Evolution, 2003, 18, 140-146.	8.7	395
52	Nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 2014, 4, 471-476.	18.8	383
53	Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 2007, 10, 619-627.	6.4	379
54	Functional Matrix: A Conceptual Framework for Predicting Multiple Plant Effects on Ecosystem Processes. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 455-485.	8.3	378

#	Article	IF	CITATIONS
55	Managing the whole landscape: historical, hybrid, and novel ecosystems. Frontiers in Ecology and the Environment, 2014, 12, 557-564.	4.0	378
56	Plant diversity enhances productivity and soil carbon storage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4027-4032.	7.1	368
57	This Must Be the Place: Underrepresentation of Identity and Meaning in Climate Change Decision-Making. Global Environmental Politics, 2011, 11, 1-25.	3.0	361
58	Steppe-Tundra Transition: A Herbivore-Driven Biome Shift at the End of the Pleistocene. American Naturalist, 1995, 146, 765-794.	2.1	354
59	Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature, 2001, 409, 188-191.	27.8	348
60	Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate. Global Change Biology, 2000, 6, 84-115.	9.5	346
61	A comprehensive review of climate adaptation in the United States: more than before, but less than needed. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 361-406.	2.1	334
62	The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos, 2001, 93, 274-285.	2.7	330
63	Epistemological Pluralism: Reorganizing Interdisciplinary Research. Ecology and Society, 2008, 13, .	2.3	324
64	Physiological and Growth Responses of Arctic Plants to a Field Experiment Simulating Climatic Change. Ecology, 1996, 77, 822-840.	3.2	320
65	Ecosystem Consequences of Changing Biodiversity. BioScience, 1998, 48, 45-52.	4.9	319
66	Effects of Soil Burn Severity on Post-Fire Tree Recruitment in Boreal Forest. Ecosystems, 2006, 9, 14-31.	3.4	313
67	Paying for Ecosystem Servicesâ€"Promise and Peril. Science, 2011, 334, 603-604.	12.6	310
68	Fire, climate change, and forest resilience in interior AlaskaThis article is one of a selection of papers from The Dynamics of Change in Alaska's Boreal Forests: Resilience and Vulnerability in Response to Climate Warming Canadian Journal of Forest Research, 2010, 40, 1302-1312.	1.7	306
69	Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Global Change Biology, 2004, 10, 105-123.	9.5	299
70	Methane bubbling from northern lakes: present and future contributions to the global methane budget. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365, 1657-1676.	3.4	294
71	North Siberian Lakes: A Methane Source Fueled by Pleistocene Carbon. Science, 1997, 277, 800-802.	12.6	293
72	Thermokarst Lakes as a Source of Atmospheric CH ₄ During the Last Deglaciation. Science, 2007, 318, 633-636.	12.6	287

#	Article	IF	Citations
73	Thresholds for boreal biome transitions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21384-21389.	7.1	286
74	Tundra Plant Uptake of Amino Acid and NH4+Nitrogen in Situ: Plants Complete Well for Amino Acid N. Ecology, 1996, 77, 2142-2147.	3.2	285
75	Effects of Plant Traits on Ecosystem and Regional Processes: a Conceptual Framework for Predicting the Consequences of Global Change. Annals of Botany, 2003, 91, 455-463.	2.9	278
76	Our future in the Anthropocene biosphere. Ambio, 2021, 50, 834-869.	5 . 5	275
77	THE RESPONSE OF TUNDRA PLANT BIOMASS, ABOVEGROUND PRODUCTION, NITROGEN, AND CO2FLUX TO EXPERIMENTAL WARMING. Ecology, 1998, 79, 1526-1544.	3.2	274
78	Fertile forests produce biomass more efficiently. Ecology Letters, 2012, 15, 520-526.	6.4	273
79	SPECIES COMPOSITION INTERACTS WITH FERTILIZER TO CONTROL LONG-TERM CHANGE IN TUNDRA PRODUCTIVITY. Ecology, 2001, 82, 3163-3181.	3.2	271
80	The changing global carbon cycle: linking plant–soil carbon dynamics to global consequences. Journal of Ecology, 2009, 97, 840-850.	4.0	262
81	Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 2013, 119, 359-374.	3.6	257
82	Interactions among Processes Controlling Successional Change. Oikos, 1987, 50, 131.	2.7	256
83	Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?. Journal of Ecology, 2001, 89, 984-994.	4.0	256
84	Boreal forest and tundra ecosystems as components of the climate system. Climatic Change, 1995, 29, 145-167.	3.6	250
85	Changing feedbacks in the climate–biosphere system. Frontiers in Ecology and the Environment, 2008, 6, 313-320.	4.0	247
86	The Role of Life History Processes in Primary Succession on an Alaskan Floodplain. Ecology, 1986, 67, 1243-1253.	3.2	245
87	Element Cycling in Taiga Forests: State-Factor Control. BioScience, 1991, 41, 78-88.	4.9	242
88	Breaks in the cycle: dissolved organic nitrogen in terrestrial ecosystems. Frontiers in Ecology and the Environment, 2003, 1, 205-211.	4.0	239
89	Approaches to defining a planetary boundary for biodiversity. Global Environmental Change, 2014, 28, 289-297.	7.8	236
90	Predominance of ecophysiological controls on soil CO2 flux in a Minnesota grassland. Plant and Soil, 1998, 207, 77-86.	3.7	226

#	Article	IF	Citations
91	Direct and indirect effects of temperature on arctic plants. Polar Biology, 1983, 2, 47-52.	1.2	220
92	Winter regulation of tundra litter carbon and nitrogen dynamics. Biogeochemistry, 1996, 35, 327-338.	3.5	217
93	Fire Interval Effects on Successional Trajectory in Boreal Forests of Northwest Canada. Ecosystems, 2006, 9, 268-277.	3.4	208
94	Decadal observations of tree regeneration following fire in boreal forests. Canadian Journal of Forest Research, 2004, 34, 267-273.	1.7	203
95	Nutritional Controls Over Nitrogen and Phosphorus Resorption From Alaskan Birch Leaves. Ecology, 1991, 72, 709-715.	3.2	202
96	Substrate limitations to microbial activity in taiga forest floors. Soil Biology and Biochemistry, 2001, 33, 173-188.	8.8	200
97	Integrated Regional Changes in Arctic Climate Feedbacks: Implications for the Global Climate System. Annual Review of Environment and Resources, 2006, 31, 61-91.	13.4	199
98	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	5.2	199
99	Resilience, experimentation, and scale mismatches in social-ecological landscapes. Landscape Ecology, 2013, 28, 1139-1150.	4.2	197
100	The Representation of Arctic Soils in the Land Surface Model: The Importance of Mosses. Journal of Climate, 2001, 14, 3324-3335.	3.2	196
101	Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia, 2000, 122, 537-544.	2.0	194
102	Sinks for nitrogen inputs in terrestrial ecosystems: a metaâ€analysis of ¹⁵ N tracer field studies. Ecology, 2012, 93, 1816-1829.	3.2	192
103	Long-term responses to factorial, NPK fertilizer treatment by Alaskan wet and moist tundra sedge species. Ecography, 1995, 18, 259-275.	4.5	190
104	Physiological Controls Over Seedling Growth in Primary Succession on an Alaskan Floodplain. Ecology, 1986, 67, 1508-1523.	3.2	189
105	TIME LAGS AND NOVEL ECOSYSTEMS IN RESPONSE TO TRANSIENT CLIMATIC CHANGE IN ARCTIC ALASKA. , 1997, 35, 449-461.		188
106	Effects of Multiple Environmental Stresses on Nutrient Availability and Use., 1991,, 67-88.		185
107	Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecological Applications, 2009, 19, 1022-1043.	3.8	185
108	Principles of Ecosystem Sustainability. American Naturalist, 1996, 148, 1016-1037.	2.1	184

#	Article	IF	Citations
109	The effect of post-fire stand age on the boreal forest energy balance. Agricultural and Forest Meteorology, 2006, 140, 41-50.	4.8	184
110	The Cost of Tundra Plant Structures: Evaluation of Concepts and Currencies. American Naturalist, 1989, 133, 1-19.	2.1	181
111	Surface energy exchanges along a tundra-forest transition and feedbacks to climate. Agricultural and Forest Meteorology, 2005, 131, 143-161.	4.8	180
112	Adaptive governance and institutional strategies for climate-induced community relocations in Alaska. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9320-9325.	7.1	179
113	Productivity and Nutrient Cycling of Alaskan Tundra: Enhancement by Flowing Soil Water. Ecology, 1988, 69, 693-702.	3.2	176
114	Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: An annual perspective. Journal of Geophysical Research, 2005, 110 , .	3.3	174
115	Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon/nutrient balance. Oecologia, 1987, 72, 510-514.	2.0	172
116	Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages. Journal of Geophysical Research, 2008, 113 , .	3.3	170
117	Increasing Wildfire in Alaska's Boreal Forest: Pathways to Potential Solutions of a Wicked Problem. BioScience, 2008, 58, 531-540.	4.9	170
118	Planetary Opportunities: A Social Contract for Global Change Science to Contribute to a Sustainable Future. BioScience, 2012, 62, 603-606.	4.9	169
119	Global Change and the Boreal Forest: Thresholds, Shifting States or Gradual Change?. Ambio, 2004, 33, 361-365.	5.5	168
120	Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecologia, 1997, 109, 149-153.	2.0	166
121	Postfire Soil N Cycling in Northern Conifer Forests Affected by Severe, Stand-Replacing Wildfires. Ecosystems, 2005, 8, 163-181.	3.4	165
122	Growth response of barley and tomato to nitrogen stress and its control by abscisic acid, water relations and photosynthesis. Planta, 1988, 173, 352-366.	3.2	164
123	Contrasting effects of elevated CO2 on old and new soil carbon pools. Soil Biology and Biochemistry, 2001, 33, 365-373.	8.8	163
124	Controls over Nutrient Resorption from Leaves of Evergreen Mediterranean Species. Ecology, 1993, 74, 124-129.	3.2	156
125	Long-Term and Large-Scale Perspectives on the Relationship between Biodiversity and Ecosystem Functioning. BioScience, 2003, 53, 89.	4.9	156
126	Earth Stewardship: science for action to sustain the human-earth system. Ecosphere, 2011, 2, art89.	2.2	154

#	Article	IF	CITATIONS
127	CO2exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: Importance of convective mixing. Journal of Geophysical Research, 2003, 108, .	3.3	153
128	Primary and secondary stem growth in arctic shrubs: implications for community response to environmental change. Journal of Ecology, 2002, 90, 251-267.	4.0	148
129	CLIMATIC EFFECTS ON TUNDRA CARBON STORAGE INFERRED FROM EXPERIMENTAL DATA AND A MODEL. Ecology, 1997, 78, 1170-1187.	3.2	147
130	Policy strategies to address sustainability of Alaskan boreal forests in response to a directionally changing climate. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16637-16643.	7.1	145
131	Temperature control over root growth and root biomass in taiga forest trees. Canadian Journal of Forest Research, 1983, 13, 827-833.	1.7	143
132	Climate Change and the Integrity of Science. Science, 2010, 328, 689-690.	12.6	143
133	Carbon/nutrient balance as a predictor of plant defense in Alaskan balsam poplar: Potential importance of metabolite turnover. Oecologia, 1991, 88, 401-406.	2.0	142
134	Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Global Change Biology, 2007, 13, 2425-2438.	9.5	138
135	Effects of Phosphorus Nutrition and Defoliation on C4Graminoids from the Serengeti Plains. Ecology, 1985, 66, 1617-1629.	3.2	137
136	Significance of sequential leaf development for nutrient balance of the cotton sedge, Eriophorum vaginatum L Oecologia, 1985, 67, 511-518.	2.0	137
137	Energy and trace-gas fluxes across a soil pH boundary in the Arctic. Nature, 1998, 394, 469-472.	27.8	135
138	Detecting changes in soil carbon in CO2 enrichment experiments. Plant and Soil, 1995, 187, 135-145.	3.7	134
139	Accelerate Synthesis in Ecology and Environmental Sciences. BioScience, 2009, 59, 699-701.	4.9	132
140	Sense of place: A process for identifying and negotiating potentially contested visions of sustainability. Environmental Science and Policy, 2015, 53, 38-46.	4.9	130
141	Plant Phenols and Nutrients in Relation to Variations in Climate and Rodent Grazing. American Naturalist, 1986, 128, 394-408.	2.1	125
142	Resilience of Alaska's boreal forest to climatic changeThis article is one of a selection of papers from The Dynamics of Change in Alaska's Boreal Forests: Resilience and Vulnerability in Response to Climate Warming Canadian Journal of Forest Research, 2010, 40, 1360-1370.	1.7	125
143	Arctic system on trajectory to new, seasonally ice-free state. Eos, 2005, 86, 309.	0.1	124
144	Morphological and Physiological Mechanisms of Temperature Compensation in Phosphate Absorption along a Latitudinal Gradient. Ecology, 1974, 55, 1180-1198.	3.2	123

#	Article	lF	Citations
145	An experimental test of limits to tree establishment in Arctic tundra. Journal of Ecology, 1998, 86, 449-461.	4.0	123
146	Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site. Journal of Geophysical Research, 2009, 114, .	3.3	123
147	Title is missing!. Biogeochemistry, 1997, 37, 89-109.	3.5	121
148	Effect of defoliation upon root growth, phosphate absorption and respiration in nutrient-limited tundra graminoids. Oecologia, 1979, 42, 67-79.	2.0	120
149	Nutrient Allocation and Responses to Defoliation in Tundra Plants. Arctic and Alpine Research, 1980, 12, 553.	1.3	120
150	Mild phosphorus stress in barley and a related low-phosphorus-adapted barleygrass: Phosphorus fractions and phosphate absorption in relation to growth. Physiologia Plantarum, 1982, 54, 309-317.	5.2	120
151	Plant Responses to Species Removal and Experimental Warming in Alaskan Tussock Tundra. Oikos, 1999, 84, 417.	2.7	120
152	Title is missing!. Plant Ecology, 2003, 165, 85-100.	1.6	120
153	Recovery of Aboveground Plant Biomass and Productivity After Fire in Mesic and Dry Black Spruce Forests of Interior Alaska. Ecosystems, 2008, 11, 209-225.	3.4	120
154	Response of tundra CH4 and CO2 flux tomanipulation of temperature and vegetation. Biogeochemistry, 1998, 41, 215-235.	3. 5	119
155	Plant and soil responses to neighbour removal and fertilization in Alaskan tussock tundra. Journal of Ecology, 2004, 92, 635-647.	4.0	117
156	A TRANSIENT, NUTRIENT-BASED MODEL OF ARCTIC PLANT COMMUNITY RESPONSE TO CLIMATIC WARMING. , 2000, $10,824-841$.		116
157	The controls on net ecosystem productivity along an Arctic transect: a model comparison with flux measurements. Global Change Biology, 2000, 6, 116-126.	9.5	114
158	Non-equilibrium succession dynamics indicate continued northern migration of lodgepole pine. Global Change Biology, 2003, 9, 1401-1409.	9.5	114
159	Arctic Soil Respiration: Effects of Climate and Vegetation Depend on Season. Ecosystems, 1999, 2, 451-459.	3.4	112
160	Summer Differences among Arctic Ecosystems in Regional Climate Forcing. Journal of Climate, 2000, 13, 2002-2010.	3.2	111
161	Model of Transient Changes in Arctic and Boreal Vegetation in Response to Climate and Land Use Change. , 1996, 6, 842-864.		110
162	Guiding concepts for park and wilderness stewardship in an era of global environmental change. Frontiers in Ecology and the Environment, 2010, 8, 483-490.	4.0	110

#	Article	IF	Citations
163	Ecotypic Differentiation of Growth Processes in Carex Aquatilis along Latitudinal and Local Gradients. Ecology, 1981, 62, 1000-1009.	3.2	109
164	Defensive Responses of Trees in Relation to Their Carbon/Nutrient Balance., 1988,, 57-72.		109
165	Winter chemical defense of Alaskan balsam poplar against snowshoe hares. Journal of Chemical Ecology, 1990, 16, 1941-1959.	1.8	109
166	Relationship of ion absorption to growth rate in taiga trees. Oecologia, 1986, 69, 238-242.	2.0	108
167	Indigenous frameworks for observing and responding to climate change in Alaska. Climatic Change, 2013, 120, 557-567.	3.6	108
168	Changes in Soil Properties and Vegetation Following Disturbance of Alaskan Arctic Tundra. Journal of Applied Ecology, 1981, 18, 605.	4.0	107
169	New cog in the nitrogen cycle. Nature, 1995, 377, 199-200.	27.8	107
170	Subgrid-scale variability in the surface energy balance of arctic tundra. Journal of Geophysical Research, 1998, 103, 28947-28961.	3.3	107
171	Cross-system comparisons elucidate disturbance complexities and generalities. Ecosphere, 2011, 2, art81.	2.2	107
172	Interactions and Linkages among Ecosystems during Landscape Evolution. BioScience, 2007, 57, 237-247.	4.9	106
173	Detecting changes in arctic tundra plant communities in response to warming over decadal time scales. Global Change Biology, 2004, 10, 1325-1334.	9.5	105
174	The nature of spatial transitions in the Arctic. Journal of Biogeography, 2004, 31, 1917-1933.	3.0	103
175	A Framework for Understanding Change. , 2009, , 3-28.		102
176	Functional Role of Growth Forms in Ecosystem and Global Processes. , 1993, , 287-312.		101
177	The role of mosses in the phosphorus cycling of an Alaskan black spruce forest. Oecologia, 1987, 74, 310-315.	2.0	100
178	Soil microbial feedbacks to atmospheric CO2 enrichment. Trends in Ecology and Evolution, 1999, 14, 433-437.	8.7	100
179	Response of subarctic vegetation to transient climatic change on the Seward Peninsula in north-west Alaska. Global Change Biology, 2000, 6, 541-555.	9.5	100
180	Lack of compensatory growth under phosphorus deficiency in grazing-adapted grasses from the Serengeti Plains. Oecologia, 1989, 79, 551-557.	2.0	99

#	Article	lF	CITATIONS
181	Photosynthesis, Respiration, and Phosphate Absorption by Carex Aquatilis Ecotypes along Latitudinal and Local Environmental Gradients. Ecology, 1983, 64, 743-751.	3.2	96
182	Competitive Ability and Adaptation to Fertile and Infertile Soils in Two Eriophorum Species. Ecology, 1989, 70, 736-749.	3.2	95
183	Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Trends in Ecology and Evolution, 1994, 9, 45-47.	8.7	95
184	Calcium-rich tundra, wildlife, and the "Mammoth Steppe― Quaternary Science Reviews, 2001, 20, 149-163.	3.0	95
185	Fire Severity Filters Regeneration Traits to Shape Community Assembly in Alaska's Boreal Forest. PLoS ONE, 2013, 8, e56033.	2.5	95
186	Contribution of Disturbance to Increasing Seasonal Amplitude of Atmospheric CO2. Science, 1999, 284, 1973-1976.	12.6	94
187	Estimating methane emissions from northern lakes using iceâ€bubble surveys. Limnology and Oceanography: Methods, 2010, 8, 592-609.	2.0	94
188	Growth, Phosphate Absorption, and Phosphorus Chemical Fractions in Two Chionochloa Species. Journal of Ecology, 1982, 70, 305.	4.0	93
189	Plant Species Mediate Changes in Soil Microbial N in Response to Elevated CO2. Ecology, 1996, 77, 2505-2515.	3.2	93
190	Plant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra. Journal of Ecology, 2008, 96, 713-726.	4.0	93
191	SEASONAL VARIATIONS IN PLANT SPECIES EFFECTS ON SOIL N AND P DYNAMICS. Ecology, 2006, 87, 974-986.	3.2	91
192	Carbon dioxide and water vapour exchange from understory species in boreal forest. Agricultural and Forest Meteorology, 2004, 123, 135-147.	4.8	89
193	Socio-Environmental Systems (SES) Research: what have we learned and how can we use this information in future research programs. Current Opinion in Environmental Sustainability, 2016, 19, 160-168.	6.3	89
194	Title is missing!. Climatic Change, 2001, 48, 399-416.	3.6	88
195	A REGIONAL STUDY OF THE CONTROLS ON WATER VAPOR AND CO2EXCHANGE IN ARCTIC TUNDRA. Ecology, 2003, 84, 2762-2776.	3.2	88
196	Evidence and implications of recent and projected climate change in Alaska's forest ecosystems. Ecosphere, 2011, 2, art124.	2.2	87
197	Title is missing!. Landscape Ecology, 2000, 15, 383-400.	4.2	85
198	Earth stewardship: a strategy for social–ecological transformation to reverse planetary degradation. Journal of Environmental Studies and Sciences, 2011, 1, 44-53.	2.0	84

#	Article	IF	CITATIONS
199	Carbon storage in permafrost and soils of the mammoth tundraâ€steppe biome: Role in the global carbon budget. Geophysical Research Letters, 2009, 36, .	4.0	80
200	Resilience of Athabascan subsistence systems to interior Alaska's changing climateThis article is one of a selection of papers from The Dynamics of Change in Alaska's Boreal Forests: Resilience and Vulnerability in Response to Climate Warming Canadian Journal of Forest Research, 2010, 40, 1347-1359.	1.7	79
201	Title is missing!. Biogeochemistry, 1997, 36, 223-237.	3.5	73
202	Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141429.	2.6	73
203	Building Resilience and Adaptation to Manage Arctic Change. Ambio, 2006, 35, 198-202.	5.5	70
204	Productivity and Nutrient Cycling of Alaskan Tundra: Enchancement by Flowing Water. Ecology, 1988, 69, 1638-1638.	3.2	69
205	A Comparative Approach to Regional Variation in Surface Fluxes Using Mobile Eddy Correlation Towers. Boundary-Layer Meteorology, 1997, 85, 293-307.	2.3	69
206	Nitrogen and phosphorus nutrition and nutrient cycling by evergreen and deciduous understory shrubs in an Alaskan black spruce forest. Canadian Journal of Forest Research, 1983, 13, 773-781.	1.7	68
207	Scale-dependent environmental controls over species composition in Alaskan black spruce communities. Canadian Journal of Forest Research, 2006, 36, 1781-1796.	1.7	68
208	Arctic communities perceive climate impacts on access as a critical challenge to availability of subsistence resources. Climatic Change, 2016, 139, 413-427.	3.6	68
209	Differences in Steady-State Net Ammonium and Nitrate Influx by Cold- and Warm-Adapted Barley Varieties. Plant Physiology, 1981, 68, 1064-1067.	4.8	67
210	Planning for resilience: modeling change in human–fire interactions in the Alaskan boreal forest. Frontiers in Ecology and the Environment, 2003, 1, 255-261.	4.0	67
211	Protected areas and their surrounding territory: socioecological systems in the context of ecological solidarity. Ecological Applications, 2016, 26, 5-16.	3.8	67
212	Arctic., 1985,, 16-40.		66
213	Environmental and physiological factors governing nutrient resorption efficiency in barley. Oecologia, 1992, 90, 120-126.	2.0	66
214	RECONSTRUCTION AND ANALYSIS OF HISTORICAL CHANGES IN CARBON STORAGE IN ARCTIC TUNDRA. Ecology, 1997, 78, 1188-1198.	3.2	66
215	Large CO ₂ effluxes at night and during synoptic weather events significantly contribute to CO ₂ emissions from a reservoir. Environmental Research Letters, 2016, 11, 064001.	5.2	66
216	The role of data assimilation in predictive ecology. Ecosphere, 2014, 5, 1-16.	2.2	65

#	Article	IF	Citations
217	Revegetation of an Arctic Disturbed Site by Native Tundra Species. Journal of Applied Ecology, 1980, 17, 449.	4.0	64
218	Approaches to studying nutrient uptake, use and loss in plants. , 1989, , 185-207.		64
219	Demographic Patterns of Seedling Establishment and Growth of Native Graminoids in an Alaskan Tundra Disturbance. Journal of Applied Ecology, 1983, 20, 965.	4.0	63
220	Physiological determinants of growth rate in response to phosphorus supply in wild and cultivated Hordeum species. Oecologia, 1989, 79, 96-105.	2.0	63
221	Modeling the Impact of Black Spruce on the Fire Regime of Alaskan Boreal Forest. Climatic Change, 2002, 55, 213-233.	3.6	63
222	Climate engineering reconsidered. Nature Climate Change, 2014, 4, 527-529.	18.8	63
223	Ecosystem Services and Emergent Vulnerability in Managed Ecosystems: A Geospatial Decision-Support Tool. Ecosystems, 2008, 11, 923-938.	3.4	62
224	Growth and Flowering in Eriophorum Vaginatum: Annual and Latitudinal Variation. Ecology, 1986, 67, 1524-1535.	3.2	60
225	The Logic of Carbon and Nitrogen Interactions in Terrestrial Ecosystems. American Naturalist, 1997, 149, 723-744.	2.1	60
226	FROSTFIRE: An experimental approach to predicting the climate feedbacks from the changing boreal fire regime. Journal of Geophysical Research, 2003, 108, FFR 9-1.	3.3	60
227	Human Impacts on the Fire Regime of Interior Alaska: Interactions among Fuels, Ignition Sources, and Fire Suppression. Ecosystems, 2006, 9, 1342-1353.	3.4	60
228	Human Influences on Wildfire in Alaska from 1988 through 2005: An Analysis of the Spatial Patterns of Human Impacts. Earth Interactions, 2008, 12, 1-17.	1.5	60
229	Competition causes regular spacing of alder in Alaskan shrub tundra. Oecologia, 1989, 79, 412-416.	2.0	59
230	Impact of Agricultural Land-use Change on Carbon Storage in Boreal Alaska. Global Change Biology, 2004, 10, 452-472.	9.5	59
231	Winter habitat selection by caribou in relation to lichen abundance, wildfires, grazing, and landscape characteristics in northwest Alaska. Ecoscience, 2010, 17, 321-333.	1.4	59
232	Herbivory-Mediated Responses of Selected Boreal Forests to Climatic Change. Climatic Change, 2001, 48, 427-440.	3.6	58
233	Linkages between large-scale climate patterns and the dynamics of Arctic caribou populations. Ecography, 2011, 34, 345-352.	4.5	58
234	Ecosystem stewardship: A resilience framework for arctic conservation. Global Environmental Change, 2015, 34, 207-217.	7.8	58

#	Article	IF	CITATIONS
235	Controls on moss evaporation in a boreal black spruce forest. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	57
236	Plant–microbial interactions. Nature, 1997, 385, 26-27.	27.8	56
237	Estimating abundance of Sitka blackâ€ŧailed deer using DNA from fecal pellets. Journal of Wildlife Management, 2011, 75, 232-242.	1.8	56
238	Geographic patterns and dynamics of Alaskan climate interpolated from a sparse station record. Global Change Biology, 2000, 6, 49-58.	9.5	51
239	Influence of phosphorus on growth and biomass distribution of Alaskan taiga tree seedlings. Canadian Journal of Forest Research, 1983, 13, 1092-1098.	1.7	50
240	Species-specific responses of plant communities to altered carbon and nutrient availability. Global Change Biology, 2001, 7, 435-450.	9.5	50
241	Differences in carbon and nutrient fractions among arctic growth forms. Oecologia, 1988, 77, 506-514.	2.0	48
242	Seasonal uptake and allocation of phosphorus in Eriophorum vaginatum L measured by labelling with 32 P. New Phytologist, 1991, 118, 349-357.	7.3	48
243	Title is missing!. Biogeochemistry, 2003, 64, 271-296.	3.5	48
244	Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska. Polar Research, 2009, 28, 100-118.	1.6	48
245	Lack of induced chemical defense in juvenile Alaskan woody plants in response to simulated browsing. Oecologia, 1985, 67, 457-459.	2.0	47
246	Modeling Sustainability of Arctic Communities: An Interdisciplinary Collaboration of Researchers and Local Knowledge Holders. Ecosystems, 2004, 7, 815-828.	3.4	47
247	Boreal Fire Effects on Subsistence Resources in Alaska and Adjacent Canada. Ecosystems, 2008, 11, 156-171.	3.4	47
248	WHITE SPRUCE MEETS BLACK SPRUCE: DISPERSAL, POSTFIRE ESTABLISHMENT, AND GROWTH IN A WARMING CLIMATE. Ecological Monographs, 2008, 78, 489-505.	5.4	47
249	Plant Toxicity, Adaptive Herbivory, and Plant Community Dynamics. Ecosystems, 2009, 12, 534-547.	3.4	47
250	Fire severity mediates climate-driven shifts in understorey community composition of black spruce stands of interior Alaska. Journal of Vegetation Science, 2011, 22, 32-44.	2.2	47
251	Absence of net longâ€term successional facilitation by alder in a boreal Alaska floodplain. Ecology, 2016, 97, 2986-2997.	3.2	47
252	The Jasper Ridge CO2 Experiment: Design and Motivation. , 1996, , 121-145.		47

#	Article	IF	CITATIONS
253	Reconciling well-being and resilience for sustainable development. Nature Sustainability, 2022, 5, 287-293.	23.7	47
254	Corrected calculations for soil and ecosystem measurements of CO2 flux using the LI-COR 6200 portable photosynthesis system. Oecologia, 2002, 132, 1-11.	2.0	46
255	Spatial Heterogeneity and Soil Nitrogen Dynamics in a Burned Black Spruce Forest Stand: Distinct Controls at Different Scales. Biogeochemistry, 2005, 76, 517-537.	3.5	46
256	Anthropogenic biomes: a key contribution to earth-system science. Trends in Ecology and Evolution, 2008, 23, 529-531.	8.7	46
257	Mycorrhizal community resilience in response to experimental plant functional type removals in a woody ecosystem. Journal of Ecology, 2009, 97, 1291-1301.	4.0	46
258	Interactions between changing climate and biodiversity: Shaping humanity's future. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6295-6296.	7.1	46
259	Habitat and leaf habit as determinants of growth, nutrient absorption, and nutrient use by Alaskan taiga forest species. Canadian Journal of Forest Research, 1983, 13, 818-826.	1.7	45
260	Effect of Phosphorus Deficiency on Source-Sink Interactions Between the Flag Leaf and Developing Grain in Barley. Journal of Experimental Botany, 1988, 39, 165-177.	4.8	45
261	Nutrient sensitivity of the cost of male function in gynodioecious Phacelia linearis (Hydrophyllaceae). American Journal of Botany, 1997, 84, 1092-1098.	1.7	45
262	Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003â€⁴2100. Journal of Geophysical Research, 2009, 114, .	3.3	45
263	Vegetation succession in deglaciated landscapes: implications for sediment and landscape stability. Earth Surface Processes and Landforms, 2015, 40, 1088-1100.	2.5	45
264	WTO must ban harmful fisheries subsidies. Science, 2021, 374, 544-544.	12.6	45
265	The influence of plant species, fertilization and elevated CO2 on soil aggregate stability. Plant and Soil, 2002, 246, 211-219.	3.7	44
266	Climateâ€change impacts on ecological systems: introduction to a US assessment. Frontiers in Ecology and the Environment, 2013, 11, 456-464.	4.0	44
267	Foraging for nutrients, responses to changes in light, and competition in tropical deciduous tree seedlings. Oecologia, 1998, 117, 209-216.	2.0	43
268	Business strategies and the transition to low arbon cities. Business Strategy and the Environment, 2011, 20, 251-265.	14.3	43
269	Photosynthesis, Respiration, and Long-Distance Transport., 1998,, 10-153.		43
270	Direct and indirect effects of calcium sulfate and nitrogen on growth and succession of trees on the Tanana River floodplain, interior Alaska. Canadian Journal of Forest Research, 1993, 23, 995-1000.	1.7	42

#	Article	IF	CITATIONS
271	Science and Society: The Role of Long-Term Studies in Environmental Stewardship. BioScience, 2012, 62, 354-366.	4.9	42
272	Urbanization, Migration, and Adaptation to Climate Change. One Earth, 2020, 3, 396-399.	6.8	42
273	Impact of Arctic treeline on synoptic climate. Geophysical Research Letters, 2001, 28, 4247-4250.	4.0	41
274	Plant Community Composition as a Predictor of Regional Soil Carbon Storage in Alaskan Boreal Black Spruce Ecosystems. Ecosystems, 2008, 11, 629.	3.4	41
275	Needle loss as a mechanism of winter drought avoidance in boreal conifers. Canadian Journal of Forest Research, 1994, 24, 1144-1148.	1.7	40
276	DIFFERENTIAL EFFECTS OF COMPETITION OR MICROENVIRONMENT ON BOREAL TREE SEEDLING ESTABLISHMENT AFTER FIRE. Ecology, 2000, 81, 1086-1099.	3.2	40
277	Directional Changes in Ecological Communities and Socialâ€Ecological Systems: A Framework for Prediction Based on Alaskan Examples. American Naturalist, 2006, 168, S36-S49.	2.1	40
278	The changing effects of Alaska's boreal forests on the climate systemThis article is one of a selection of papers from The Dynamics of Change in Alaska's Boreal Forests: Resilience and Vulnerability in Response to Climate Warming Canadian Journal of Forest Research, 2010, 40, 1336-1346.	1.7	40
279	Adaptation of selected trees and grasses to low availability of phosphorus. Plant and Soil, 1983, 72, 283-287.	3.7	39
280	Causes and Consequences of Spatial Heterogeneity in Ecosystem Function., 2005,, 9-30.		38
281	Nutrient Absorption and Accumulation in Arctic Plants. , 1992, , 321-335.		37
282	Managing Climate Change Impacts to Enhance the Resilience and Sustainability of Fennoscandian Forests. Ambio, 2007, 36, 528-533.	5.5	36
283	Analyzing the functional type concept in arctic plants using a dynamic vegetation model. Oikos, 2001, 95, 239-252.	2.7	35
284	Mycorrhizal colonization mediated by species interactions in arctic tundra. Oecologia, 2003, 137, 399-404.	2.0	35
285	Transformations in Ecosystem Stewardship. , 2009, , 103-125.		35
286	The Significance of Context in Community-Based Research: Understanding Discussions about Wildfire in Huslia, Alaska. Ecology and Society, 2006, 11 , .	2.3	34
287	Plant toxins and trophic cascades alter fire regime and succession on a boreal forest landscape. Ecological Modelling, 2012, 244, 79-92.	2.5	34
288	Cumulative impacts on Alaskan arctic tundra of a quarter century of road dust. Ecoscience, 2006, 13, 503-510.	1.4	33

#	Article	IF	Citations
289	Social dimensions of fertility behavior and consumption patterns in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6300-6307.	7.1	33
290	SPRING GROWTH OF SHOOTS AND ROOTS IN SHRUBS OF AN ALASKAN MUSKEG. American Journal of Botany, 1983, 70, 1509-1515.	1.7	32
291	The roots of the matter. Nature, 2001, 411, 749-751.	27.8	32
292	Geographic Variations in Anthropogenic Drivers that Influence the Vulnerability and Resilience of Social-Ecological Systems. Ambio, 2004, 33, 377-382.	5.5	32
293	The Potential Use of Synthetic Aperture Radar for Estimating Methane Ebullition From Arctic Lakes ¹ . Journal of the American Water Resources Association, 2008, 44, 305-315.	2.4	32
294	A climate-change adaptation framework to reduce continental-scale vulnerability across conservation reserves. Ecosphere, 2011, 2, art112.	2.2	32
295	Resilience of Arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs. Ecoscience, 2013, 20, 296-310.	1.4	32
296	Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?. Ecography, 2014, 37, 204-211.	4.5	32
297	The potential for mycobiont sharing between shrubs and seedlings to facilitate tree establishment after wildfire at Alaska arctic treeline. Molecular Ecology, 2017, 26, 3826-3838.	3.9	32
298	Application of Successional Theory to Tundra Restoration: A Review. Arctic and Alpine Research, 1987, 19, 366.	1.3	31
299	Establishment of Salix alaxensis on a Gravel Pad in Arctic Alaska. Journal of Applied Ecology, 1989, 26, 575.	4.0	31
300	Design principles for socialâ€ecological transformation toward sustainability: lessons from New Zealand sense of place. Ecosphere, 2012, 3, 1-22.	2.2	31
301	A Case for Developing Place-Based Fire Management Strategies from Traditional Ecological Knowledge. Ecology and Society, 2012, 17, .	2.3	31
302	Going beyond & amp; #8220; it depends: & amp; #8221; the role of context in shaping participation in natural resource management. Ecology and Society, 2018, 23, .	2.3	31
303	Environmental responses of plants and ecosystems as predictors of the impact of global change. Journal of Biosciences, 1993, 18, 515-524.	1.1	30
304	Bringing Feedback and Resilience of High-latitude Ecosystems into the Corporate Boardroom. Ambio, 2004, 33, 371-376.	5.5	30
305	Arctic sustainability research: toward a new agenda. Polar Geography, 2016, 39, 165-178.	1.9	30
306	Plant species provide vital ecosystem functions for sustainable agriculture, rangeland management and restoration. California Agriculture, 2001, 55, 54-60.	0.8	30

#	Article	IF	CITATIONS
307	Ammonium and nitrate as nitrogen sources in two Eriophorum species. Oecologia, 1991, 88, 570-573.	2.0	29
308	Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest. Journal of Geophysical Research, 2007, 112, .	3.3	29
309	Patterns of Natural Revegetation on Abandoned Gravel Pads in Arctic Alaska. Journal of Applied Ecology, 1989, 26, 1073.	4.0	28
310	Title is missing!. , 2000, 49, 37-51.		28
311	Planetary stewardship. Frontiers in Ecology and the Environment, 2009, 7, 399-399.	4.0	28
312	Effect of nitrogen stress and abscisic acid on nitrate absorption and transport in barley and tomato. Planta, 1988, 173, 340-351.	3.2	27
313	GOPHER–PLANT–FUNGAL INTERACTIONS AFFECT ESTABLISHMENT OF AN INVASIVE GRASS. Ecology, 2003, 8 120-128.	34. 3.2	27
314	Mineral Nutrition., 2008,, 255-320.		27
315	Managing Ecosystems Sustainably: The Key Role of Resilience. , 2009, , 29-53.		27
316	Arctic Climate Impacts: Environmental Injustice in Canada and the United States. Local Environment, 2007, 12, 627-643.	2.4	26
317	Fire-severity effects on plant–fungal interactions after a novel tundra wildfire disturbance: implications for arctic shrub and tree migration. BMC Ecology, 2016, 16, 25.	3.0	26
318	Recovery of Productivity and Species Diversity in Tussock Tundra following Disturbance. Arctic, Antarctic, and Alpine Research, 1999, 31, 254-258.	1.1	25
319	Title is missing!. Plant and Soil, 2003, 250, 39-47.	3.7	25
320	Management Foundations for Navigating Ecological Transformation by Resisting, Accepting, or Directing Social–Ecological Change. BioScience, 2022, 72, 30-44.	4.9	25
321	Spring Growth of Shoots and Roots in Shrubs of an Alaskan Muskeg. American Journal of Botany, 1983, 70, 1509.	1.7	25
322	Forest Systems: Living with Long-Term Change. , 2009, , 149-170.		25
323	Phosphate Uptake in Arctic Plants in Relation to Phosphate Supply: The Role of Spatial and Temporal Variability. Oikos, 1994, 70, 443.	2.7	24
324	Factors Contributing to the Cultural and Spatial Variability of Landscape Burning by Native Peoples of Interior Alaska. Ecology and Society, 2007, 12, .	2.3	24

#	Article	IF	Citations
325	Resilience-Based Stewardship: Strategies for Navigating Sustainable Pathways in a Changing World., 2009,, 319-337.		24
326	Parks, people, and change: the importance of multistakeholder engagement in adaptation planning for conserved areas. Ecology and Society, 2014 , 19 , .	2.3	23
327	Forest-landscape structure mediates effects of a spruce bark beetle (Dendroctonus rufipennis) outbreak on subsequent likelihood of burning in Alaskan boreal forest. Forest Ecology and Management, 2016, 369, 38-46.	3.2	23
328	Earth stewardship: Shaping a sustainable future through interacting policy and norm shifts. Ambio, 2022, 51, 1907-1920.	5 . 5	23
329	Community-empowered adaptation for self-reliance. Current Opinion in Environmental Sustainability, 2016, 19, 67-75.	6.3	22
330	Effect of Changing Light Availability on Nutrient Foraging in Tropical Deciduous Tree-Seedlings. Oikos, 1998, 82, 449.	2.7	21
331	Selective gopher disturbance influences plant species effects on nitrogen cycling. Oikos, 2005, 109, 154-166.	2.7	21
332	Effects of species and tree size diversity on recruitment in the Alaskan boreal forest: A geospatial approach. Forest Ecology and Management, 2011, 262, 1608-1617.	3.2	21
333	Ecological Knowledge Among Communities, Managers and Scientists: Bridging Divergent Perspectives to Improve Forest Management Outcomes. Environmental Management, 2016, 57, 798-813.	2.7	21
334	Drylands: Coping with Uncertainty, Thresholds, and Changes in State., 2009, , 171-195.		21
335	Radioassay of 32P in intact plant roots using Cerenkov radiation detection. The International Journal of Applied Radiation and Isotopes, 1974, 25, 568-570.	0.7	19
336	The Services-Oriented Architecture: Ecosystem Services as a Framework for Diagnosing Change in Social Ecological Systems. Ecosystems, 2008, 11, 478-489.	3.4	19
337	Invitation to Earth Stewardship. Frontiers in Ecology and the Environment, 2013, 11, 339-339.	4.0	19
338	Future changes in the supply of goods and services from natural ecosystems: prospects for the European north. Ecology and Society, 2015 , 20 , .	2.3	19
339	Now is the time for translational ecology. Frontiers in Ecology and the Environment, 2017, 15, 539-539.	4.0	19
340	Indigenous frameworks for observing and responding to climate change in Alaska., 2013,, 49-59.		19
341	Decomposition and Ecosystem Carbon Budgets. , 2011, , 183-228.		18
342	The use of a reduced form model to assess the sensitivity of a land surface model to biotic surface parameters. Climate Dynamics, 2002, 19, 455-466.	3.8	17

#	Article	IF	CITATIONS
343	Differences in Surface Roughness, Energy, and CO2Fluxes in Two Moist Tundra Vegetation Types, Kuparuk Watershed, Alaska, U.S.A. Arctic, Antarctic, and Alpine Research, 2005, 37, 61-67.	1.1	17
344	Conservation, Community, and Livelihoods: Sustaining, Renewing, and Adapting Cultural Connections to the Land., 2009, , 129-147.		17
345	The Ecosystem Concept., 2011,, 3-22.		17
346	Modeling and mapping forest diversity in the boreal forest of interior Alaska. Landscape Ecology, 2017, 32, 397-413.	4.2	17
347	Planetary Stewardship, with an Introduction from the Editorâ€inâ€Chief. Bulletin of the Ecological Society of America, 2010, 91, 143-175.	0.2	16
348	Lipid Properties of Carex aquatilis from Hot Spring and Permafrost-Dominated Sites in Alaska: Implications for Nutrient Requirements. Physiologia Plantarum, 1978, 44, 231-237.	5.2	15
349	Seasonal control over allocation to reproduction in a tussock-forming and a rhizomatous species of Eriophorum in central Alaska. Oecologia, 1989, 78, 27-34.	2.0	15
350	Policy Language in Restoration Ecology. Restoration Ecology, 2014, 22, 1-4.	2.9	15
351	Adaptations and physiological responses of wild plants to nutrient stress., 1987,, 15-25.		15
352	Future directions of global change research in terrestrial ecosystems. Trends in Ecology and Evolution, 1994, 9, 371-372.	8.7	14
353	Coupled biogeochemical cycles and Earth stewardship. Frontiers in Ecology and the Environment, 2011, 9, 3-3.	4.0	14
354	Landscape Heterogeneity and Ecosystem Dynamics. , 2011, , 369-397.		14
355	Earth Stewardship: An Initiative by the Ecological Society of America to Foster Engagement to Sustain Planet Earth. Ecology and Ethics, 2015, , 173-194.	1.0	14
356	Recovery of Productivity and Species Diversity in Tussock Tundra Following Disturbance. Arctic, Antarctic, and Alpine Research, 1999, 31, 254.	1.1	14
357	A Changing Number of Alternative States in the Boreal Biome: Reproducibility Risks of Replacing Remote Sensing Products. PLoS ONE, 2015, 10, e0143014.	2.5	13
358	Getting to the root of the matter: landscape implications of plant-fungal interactions for tree migration in Alaska. Landscape Ecology, 2016, 31, 895-911.	4.2	13
359	Nutrient Manipulations in Terrestrial Ecosystems. , 2000, , 291-307.		13
360	Growth and Allocation. , 1998, , 299-351.		13

#	Article	IF	CITATIONS
361	Changing Daily Wind Speeds on Alaska's North Slope: Implications for Rural Hunting Opportunities. Arctic, 2013, 66, .	0.4	13
362	Lack of Latitudinal Variations in Graminoid Storage Reserves. Ecology, 1989, 70, 269-272.	3.2	12
363	Response—Ecosystem Services: Free Lunch No More. Science, 2012, 335, 656-657.	12.6	11
364	Ranch Owner Perceptions and Planned Actions in Response to a Proposed Endangered Species Act Listing. Rangeland Ecology and Management, 2015, 68, 453-460.	2.3	11
365	Climate Feedbacks in the Alaskan Boreal Forest. , 2006, , .		11
366	Species Composition Interacts with Fertilizer to Control Long-Term Change in Tundra Productivity. Ecology, 2001, 82, 3163.	3.2	11
367	Phosphate absorption and root respiration of different plant growth forms from northern Alaska. Ecography, 1982, 5, 164-171.	4.5	10
368	Mineral Nutrition. , 1998, , 239-298.		10
369	Challenges to Adaptation in Northernmost Europe as a Result of Global Climate Change. Ambio, 2010, 39, 81-84.	5.5	10
370	Detecting, estimating, and correcting for biases in harvest data. Journal of Wildlife Management, 2015, 79, 1152-1162.	1.8	10
371	Impacts of Global Change on Composition of Arctic Communities: Implications for Ecosystem Functioning. Ecological Studies, 1997, , 221-228.	1.2	10
372	The Response of Tundra Plant Biomass, Aboveground Production, Nitrogen, and CO 2 Flux to Experimental Warming. Ecology, 1998, 79, 1526.	3.2	9
373	Meeting Indigenous Subsistence Needs: The Case for Prey Switching in Rural Alaska. Human Dimensions of Wildlife, 2013, 18, 109-123.	1.8	9
374	Relationship of Community Characteristics to Harvest Reporting: Comparative Study of Household Surveys and Harvest Tickets in Alaska. Human Dimensions of Wildlife, 2014, 19, 334-346.	1.8	9
375	Temperature Compensation in Phosphate Absorption Occurring over Diverse Time Scales. Arctic and Alpine Research, 1977, 9, 139.	1.3	8
376	Potential Biodiversity Change: Global Patterns and Biome Comparisons. Ecological Studies, 2001, , 351-367.	1.2	8
377	Plant Colonizers Shape Early N-dynamics in Gopher-mounds. Plant and Soil, 2005, 276, 327-334.	3.7	7
378	Using DNA to test the utility of pellet-group counts as an index of deer counts. Wildlife Society Bulletin, 2013, 37, 444-450.	1.6	7

#	Article	IF	CITATIONS
379	Proactive ecology for the Anthropocene. Elementa, 2013, 1, .	3.2	7
380	Earth's Climate System. , 2011, , 23-62.		6
381	Case Study: Novel Socioâ€Ecological Systems in the North: Potential Pathways Toward Ecological and Societal Resilience. , 2013, , 334-344.		6
382	Plant Nutrient Use., 2011,, 229-258.		6
383	Traditional Knowledge and Wisdom: A Guide for Understanding and Shaping Alaskan Social-Ecological Change., 2013,, 49-62.		6
384	Temporal Dynamics. , 2011, , 339-367.		5
385	Boreal Forest. Ecological Studies, 2001, , 101-120.	1.2	5
386	Role in Ecosystem and Global Processes. , 1998, , 495-517.		5
387	Introduction—History, Assumptions, and Approaches. , 2008, , 1-9.		4
388	Robustness or resilience? Managing the intersection of ecology and engineering in an urban Alaskan fishery. Ecology and Society, 2014, 19, .	2.3	4
389	Limited overall impacts of ectomycorrhizal inoculation on recruitment of boreal trees into Arctic tundra following wildfire belie species-specific responses. PLoS ONE, 2020, 15, e0235932.	2.5	4
390	Plant Carbon Budgets. , 2011, , 157-181.		4
391	Elevated Atmospheric CO2 and Soil Biota. , 1998, 281, 517d-517.		4
392	Species Effects on Ecosystem Processes. , 2011, , 321-336.		3
393	Ecosystem and Global Processes: Ecophysiological Controls. , 2008, , 555-571.		3
394	Trophic Dynamics. , 2011, , 297-320.		2
395	Ecological Foundations of Landscape Stewardship. , 2017, , 21-34.		2
396	Long-term warming research in high-latitude ecosystems: Responses from polar ecosystems and implications for future climate., 2019, , 441-487.		2

#	Article	IF	CITATIONS
397	Interactions Among Plants., 2008,, 505-531.		2
398	Biotic Influences. , 1998, , 378-494.		2
399	Plant Biodiversity and Responses to Elevated Carbon Dioxide. Global Change - the IGBP Series, 2007, , 103-112.	2.1	2
400	Breaks in the Cycle: Dissolved Organic Nitrogen in Terrestrial Ecosystems. Frontiers in Ecology and the Environment, 2003, 1, 205.	4.0	2
401	A Holistic Definition of Healthy Traditional Harvest Practices for Rural Indigenous Communities in Interior Alaska. Journal of Agriculture, Food Systems, and Community Development, 0, , 1-15.	2.4	2
402	Water and Energy Balance., 2011,, 93-122.		1
403	A safe operating space for humanity. , 0, .		1
404	DIFFERENTIAL EFFECTS OF COMPETITION OR MICROENVIRONMENT ON BOREAL TREE SEEDLING ESTABLISHMENT AFTER FIRE. , 2000, 81, 1086.		1
405	Chapter Thirteen. Disease Effects on Landscape and Regional Systems: a Resilience Framework. , 2010, , 284-303.		0
406	Managing and Sustaining Ecosystems., 2011,, 423-447.		0
407	Life Cycles: Environmental Influences and Adaptations. , 1998, , 352-377.		O