Alexander Chroneos

List of Publications by Citations

Source: https://exaly.com/author-pdf/3620670/alexander-chroneos-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 7,086 318 49 h-index g-index citations papers 6.55 7,994 3.5 331 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
318	Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. <i>Energy and Environmental Science</i> , 2011 , 4, 2774	35.4	300
317	Anisotropic oxygen diffusion in tetragonal La2NiO4+Elmolecular dynamics calculations. <i>Journal of Materials Chemistry</i> , 2010 , 20, 266-270		161
316	Diffusion of n-type dopants in germanium. <i>Applied Physics Reviews</i> , 2014 , 1, 011301	17.3	128
315	Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+\(\mathbb{I}\) Journal of Materials Chemistry, 2011 , 21, 2183-2186		128
314	Vacancy-mediated dopant diffusion activation enthalpies for germanium. <i>Applied Physics Letters</i> , 2008 , 92, 172103	3.4	123
313	Oxygen transport in perovskite and related oxides: A brief review. <i>Journal of Alloys and Compounds</i> , 2010 , 494, 190-195	5.7	114
312	Effect of strain on the oxygen diffusion in yttria and gadolinia co-doped ceria. <i>Solid State Ionics</i> , 2013 , 230, 37-42	3.3	94
311	Interstitialcy diffusion of oxygen in tetragonal La2CoO(4+) <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2242-9	3.6	90
310	Elastic and thermodynamic properties of new (Zr3MTix)AlC2 MAX-phase solid solutions. <i>Computational Materials Science</i> , 2017 , 137, 318-326	3.2	87
309	Impact of uniaxial strain and doping on oxygen diffusion in CeO2. Scientific Reports, 2014, 4, 6068	4.9	85
308	Molecular dynamics study of oxygen diffusion in Pr(2)NiO(4+delta). <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 6834-6	3.6	82
307	Synthesis and DFT investigation of new bismuth-containing MAX phases. <i>Scientific Reports</i> , 2016 , 6, 18	829 9	82
306	Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites. <i>Solid State Ionics</i> , 2012 , 216, 41-43	3.3	77
305	Diffusion and defect reactions between donors, C, and vacancies in Ge. II. Atomistic calculations of related complexes. <i>Physical Review B</i> , 2008 , 77,	3.3	75
304	Deviations from Vegard⊠law in ternary III-V alloys. <i>Physical Review B</i> , 2010 , 82,	3.3	74
303	Diffusion of E centers in germanium predicted using GGA+U approach. <i>Applied Physics Letters</i> , 2011 , 99, 072112	3.4	73
302	Genetics of superionic conductivity in lithium lanthanum titanates. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 178-83	3.6	72

301	Vacancy-arsenic clusters in germanium. <i>Applied Physics Letters</i> , 2007 , 91, 192106	3.4	70
300	Carbon, dopant, and vacancy interactions in germanium. <i>Journal of Applied Physics</i> , 2007 , 102, 083707	2.5	68
299	Fluorine effect on As diffusion in Ge. <i>Journal of Applied Physics</i> , 2011 , 109, 113527	2.5	65
298	Modeling self-diffusion in UO2 and ThO2 by connecting point defect parameters with bulk properties. <i>Solid State Ionics</i> , 2015 , 274, 1-3	3.3	64
297	S-functionalized MXenes as electrode materials for Li-ion batteries. <i>Applied Materials Today</i> , 2016 , 5, 19-24	6.6	64
296	Intrinsic and extrinsic diffusion of indium in germanium. <i>Journal of Applied Physics</i> , 2009 , 106, 063534	2.5	63
295	Oxygen diffusion in Sr0.75Y0.25CoO2.625: A molecular dynamics study. <i>Physical Review B</i> , 2009 , 79,	3.3	63
294	c-axis hopping conductivity in heavily Pr-doped YBCO single crystals. <i>Superconductor Science and Technology</i> , 2013 , 26, 085017	3.1	62
293	Point defect engineering strategies to suppress A-center formation in silicon. <i>Applied Physics Letters</i> , 2011 , 99, 241901	3.4	62
292	Defect processes in orthorhombic LnBaCo2O5.5 double perovskites. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 15305-10	3.6	61
291	Strain-induced changes to the electronic structure of germanium. <i>Journal of Physics Condensed Matter</i> , 2012 , 24, 195802	1.8	58
290	Fluctuation conductivity and pseudogap in single crystals under pressure with transport current flowing under an angle 45½ to the twin boundaries. <i>Physica C: Superconductivity and Its Applications</i> , 2014 , 501, 24-31	1.3	57
289	Defect interactions in Sn1⊠Gex random alloys. <i>Applied Physics Letters</i> , 2009 , 94, 252104	3.4	57
288	Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and Hilbert transform. <i>Expert Systems With Applications</i> , 2017 , 85, 292-304	7.8	56
287	Impact of isovalent doping on the trapping of vacancy and interstitial related defects in Si. <i>Journal of Applied Physics</i> , 2013 , 113, 113506	2.5	56
286	Electro-transport and structure of 1-2-3 HTSC single crystals with different plane defects topologies. <i>Journal of Materials Science: Materials in Electronics</i> , 2012 , 23, 1255-1259	2.1	56
285	Oxygen defect processes in silicon and silicon germanium. <i>Applied Physics Reviews</i> , 2015 , 2, 021306	17.3	55
284	Effect of tin doping on oxygen- and carbon-related defects in Czochralski silicon. <i>Journal of Applied Physics</i> , 2011 , 110, 093507	2.5	55

283	Nonlinear stability of E centers in Si1⊠Gex: Electronic structure calculations. <i>Physical Review B</i> , 2008 , 78,	3.3	55
282	Attempts to synthesise quaternary MAX phases (Zr,M)2AlC and Zr2(Al,A)C as a way to approach Zr2AlC. <i>Materials Research Letters</i> , 2016 , 4, 137-144	7.4	54
281	Interaction of A-centers with isovalent impurities in silicon. Journal of Applied Physics, 2010, 107, 0935	182.5	54
280	Phase separation in oxygen deficient B a2Cu3O7- E single crystals: effect of high pressure and twin boundaries. <i>Philosophical Magazine</i> , 2011 , 91, 2291-2302	1.6	54
279	Fluorine codoping in germanium to suppress donor diffusion and deactivation. <i>Journal of Applied Physics</i> , 2009 , 106, 063707	2.5	52
278	The Effect of Ion Size on Solution Mechanism and Defect Cluster Geometry. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1997 , 101, 1204-1210		52
277	Effect of high pressure on the fluctuation conductivity and the charge transfer of YBa2Cu3O7II single crystals. <i>Journal of Alloys and Compounds</i> , 2008 , 453, 69-74	5.7	52
276	Implantation and diffusion of phosphorous in germanium. <i>Materials Science in Semiconductor Processing</i> , 2006 , 9, 640-643	4.3	50
275	Synthesis and physical properties of (Zr1⊠,Tix)3AlC2 MAX phases. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 3393-3401	3.8	49
274	Structural relaxation, metal-to-insulator transition and pseudo-gap in oxygen deficient B a2Cu3O7Bingle crystals. <i>Physica C: Superconductivity and Its Applications</i> , 2009 , 469, 203-206	1.3	49
273	E centers in ternary Si1₩GexSny random alloys. <i>Applied Physics Letters</i> , 2009 , 95, 112101	3.4	49
272	Review of Recent Studies on Solution Combustion Synthesis of Nanostructured Catalysts. <i>Advanced Engineering Materials</i> , 2018 , 20, 1800047	3.5	48
271	Impact of germanium on vacancy clustering in germanium-doped silicon. <i>Journal of Applied Physics</i> , 2009 , 105, 016102	2.5	47
270	Isovalent impurity-vacancy complexes in germanium. <i>Physica Status Solidi (B): Basic Research</i> , 2007 , 244, 3206-3210	1.3	47
269	Phosphorous clustering in germanium-rich silicon germanium. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2008 , 154-155, 72-75	3.1	47
268	Physical properties of the recently discovered Zr2(Al1\(\text{Bi} \) Bi x)C MAX phases. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 11925-11933	2.1	45
267	Fluctuation conductivity of oxygen underdoped YBa2Cu3O7Isingle crystals. <i>Physica B: Condensed Matter</i> , 2014 , 436, 88-90	2.8	45
266	The thermodynamics of hydride precipitation: The importance of entropy, enthalpy and disorder. <i>Acta Materialia</i> , 2014 , 79, 351-362	8.4	45

265	Defects, dopants and Mg diffusion in MgTiO. Scientific Reports, 2019, 9, 4394	4.9	44	
264	INFLUENCE OF HIGH PRESSURE ON THE TEMPERATURE-DEPENDENCE OF THE PSEUDO-GAP IN OXYGEN DEFICIENT YBa2Cu3O7-SINGLE CRYSTALS. <i>Modern Physics Letters B</i> , 2010 , 24, 2295-2301	1.6	44	
263	Intrinsic Defects and H Doping in WO. Scientific Reports, 2017, 7, 40882	4.9	43	
262	Effect of praseodymium on the electrical resistance of Yteli3個站ingle crystals. <i>Solid State Communications</i> , 2014 , 190, 18-22	1.6	43	
261	Metal-to-insulator transition in Y1NPrxBa2Cu3O7Isingle crystals with various praseodymium contents. <i>Physica C: Superconductivity and Its Applications</i> , 2013 , 485, 89-91	1.3	43	
260	INFLUENCE OF LONGITUDINAL MAGNETIC FIELD ON THE FLUCTUATION CONDUCTIVITY IN SLIGHTLY Al-DOPED YBa2Cu3-zAlzO7-ISINGLE CRYSTALS WITH A GIVEN TOPOLOGY OF PLANE DEFECTS. <i>Modern Physics Letters B</i> , 2011 , 25, 2131-2136	1.6	43	
259	Modeling oxygen self-diffusion in UO2 under pressure. Solid State Ionics, 2015, 282, 26-30	3.3	42	
258	Effect of long aging on the resistivity properties of optimally doped YBa2Cu3O7Bingle crystals. <i>Solid State Communications</i> , 2013 , 170, 6-9	1.6	42	
257	Effect of annealing on a pseudogap state in untwinned YBaCuO single crystals. <i>Scientific Reports</i> , 2019 , 9, 9274	4.9	41	
256	Nb-based MXenes for Li-ion battery applications. <i>Physica Status Solidi - Rapid Research Letters</i> , 2015 , 9, 726-729	2.5	41	
255	Relaxation of the normal electrical resistivity induced by high-pressure in strongly underdoped YBa2Cu3O7Bingle crystals. <i>Physica B: Condensed Matter</i> , 2012 , 407, 4470-4472	2.8	40	
254	Transport anisotropy and pseudo-gap state in oxygen deficient ReBa2Cu3O7[[Re=Y, Ho) single crystals. <i>Journal of Alloys and Compounds</i> , 2008 , 464, 58-66	5.7	39	
253	Effect of small oxygen deficiency on the para-coherent transition and 2DBD crossover in untwinned YBa2U咽Bingle crystals. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 4553-4556	5.7	38	
252	Effect of high pressure on the metal-dielectric transition and the pseudo-gap temperature range in oxygen deficient YBa2Cu3O7Bingle crystals. <i>Journal of Materials Science: Materials in Electronics</i> , 2011 , 22, 20-24	2.1	38	
251	Evolution of the Fishtail-Effect in Pure and Ag-doped MG-YBCO. <i>Journal of Low Temperature Physics</i> , 2010 , 161, 387-394	1.3	38	
250	Excess conductivity and pseudo-gap state in YBCO single crystals slightly doped with Al and Pr. <i>Journal of Materials Science: Materials in Electronics</i> , 2007 , 18, 811-815	2.1	38	
249	Vacancies and defect levels in IIII semiconductors. <i>Journal of Applied Physics</i> , 2013 , 114, 063517	2.5	37	
248	Nuclear wasteform materials: Atomistic simulation case studies. <i>Journal of Nuclear Materials</i> , 2013 , 441, 29-39	3.3	37	

247	Silicene/germanene on MgX2 (X = Cl, Br, and I) for Li-ion battery applications. <i>Nanoscale</i> , 2016 , 8, 7272	- 7 _{7.7}	36
246	A-centers in silicon studied with hybrid density functional theory. <i>Applied Physics Letters</i> , 2013 , 103, 05	52304	36
245	Resistive investigation of pseudogap state in non-stoichiometric ReBa2Cu3O7[[Re = Y, Ho) single crystals with account for BCSBEC crossover. <i>Journal of Alloys and Compounds</i> , 2009 , 485, L21-L23	5.7	36
244	Defect process and lithium diffusion in Li2TiO3. <i>Solid State Ionics</i> , 2018 , 327, 93-98	3.3	35
243	Effect of high pressure on the electrical resistivity of optimally doped YBa2Cu3O7lsingle crystals with unidirectional planar defects. <i>Physica B: Condensed Matter</i> , 2013 , 422, 33-35	2.8	34
242	Carbon related defects in irradiated silicon revisited. <i>Scientific Reports</i> , 2014 , 4, 4909	4.9	34
241	Experimental synthesis and density functional theory investigation of radiation tolerance of Zr3(Al1-xSix)C2 MAX phases. <i>Journal of the American Ceramic Society</i> , 2017 , 100, 1377-1387	3.8	33
240	Physical properties and defect processes of M3SnC2 (M = Ti, Zr, Hf) MAX phases: Effect of M-elements. <i>Journal of Alloys and Compounds</i> , 2018 , 748, 804-813	5.7	33
239	Atomic scale simulations of arsenic lacancy complexes in germanium and silicon. <i>Materials Science in Semiconductor Processing</i> , 2006 , 9, 536-540	4.3	33
238	Defect chemistry of doped bixbyite oxides. <i>Solid State Sciences</i> , 2007 , 9, 588-593	3.4	32
237	Lithium Doping of ZnO for High Efficiency and Stability Fullerene and Non-fullerene Organic Solar Cells. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1663-1675	6.1	30
236	A perspective on MXenes: Their synthesis, properties, and recent applications. <i>Journal of Applied Physics</i> , 2020 , 128, 170902	2.5	30
235	Defects and dopant properties of LiV(PO). Scientific Reports, 2019, 9, 333	4.9	29
234	Defects, Dopants and Sodium Mobility in NaMnSiO. Scientific Reports, 2018, 8, 14669	4.9	29
233	Lithium diffusion in LiFeO. Scientific Reports, 2018, 8, 5832	4.9	28
232	LiSnO as a Cathode Material for Lithium-ion Batteries: Defects, Lithium Ion Diffusion and Dopants. <i>Scientific Reports</i> , 2018 , 8, 12621	4.9	28
231	Defect Chemistry and Li-ion Diffusion in LiRuO. Scientific Reports, 2019, 9, 550	4.9	27
230	Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases. Journal of Applied Physics, 2018, 123, 025103	2.5	27

229	Peculiarities of pseudogap in YPrBaCuO single crystals under pressure up to 1.7 GPa. <i>Scientific Reports</i> , 2019 , 9, 20424	4.9	27	
228	Defects and lithium migration in LiCuO. Scientific Reports, 2018, 8, 6754	4.9	26	
227	Impurity diffusion, point defect engineering, and surface/interface passivation in germanium. <i>Annalen Der Physik</i> , 2012 , 524, 123-132	2.6	26	
226	Diffusion of tin in germanium: A GGA+U approach. <i>Applied Physics Letters</i> , 2011 , 99, 162103	3.4	26	
225	Engineering the free vacancy and active donor concentrations in phosphorus and arsenic double donor-doped germanium. <i>Journal of Applied Physics</i> , 2008 , 104, 113724	2.5	26	
224	Defects, dopants and Li-ion diffusion in Li2SiO3. <i>Solid State Ionics</i> , 2019 , 335, 61-66	3.3	25	
223	Point defect engineering strategies to retard phosphorous diffusion in germanium. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 367-71	3.6	23	
222	New atomic scale simulation models for hydroxides and oxyhydroxides. <i>Journal of Materials Science</i> , 2006 , 41, 675-687	4.3	23	
221	Connecting point defect parameters with bulk properties to describe diffusion in solids. <i>Applied Physics Reviews</i> , 2016 , 3, 041304	17.3	23	
220	Learning Driver Braking Behavior Using Smartphones, Neural Networks and the Sliding Correlation Coefficient: Road Anomaly Case Study. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2019 , 20, 65-74	6.1	23	
219	Solution combustion synthesis of nano-catalysts with a hierarchical structure. <i>Journal of Catalysis</i> , 2018 , 364, 112-124	7.3	23	
218	A-centers and isovalent impurities in germanium: Density functional theory calculations. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2011 , 176, 453-457	3.1	22	
217	Concentration of intrinsic defects and self-diffusion in GaSb. Journal of Applied Physics, 2008, 104, 0937	1<u>4</u>5	22	
216	A thermodynamic approach of self- and hetero-diffusion in GaAs: connecting point defect parameters with bulk properties. <i>RSC Advances</i> , 2016 , 6, 53324-53330	3.7	22	
215	Phase stability and the arsenic vacancy defect in InxGa1⊠As. <i>Physical Review B</i> , 2011 , 84,	3.3	21	
214	Defects, Lithium Mobility and Tetravalent Dopants in the LiNbO Cathode Material. <i>Scientific Reports</i> , 2019 , 9, 2192	4.9	21	
213	Defects, Dopants and Lithium Mobility in Li V (P O) (PO). Scientific Reports, 2018 , 8, 8140	4.9	21	
212	Composition and temperature dependence of self-diffusion in Si Ge alloys. <i>Scientific Reports</i> , 2017 , 7, 1374	4.9	20	

211	Impact of doping on the ionic conductivity of ceria: a comprehensive model. <i>Journal of Chemical Physics</i> , 2013 , 138, 224705	3.9	20
210	Formation and evolution of oxygen-vacancy clusters in lead and tin doped silicon. <i>Journal of Applied Physics</i> , 2012 , 111, 123508	2.5	20
209	Li3SbO4 lithium-ion battery material: Defects, lithium ion diffusion and tetravalent dopants. <i>Materials Chemistry and Physics</i> , 2019 , 225, 34-41	4.4	20
208	Influence of planar and point defects on the basal-plane conductivity of HoBaCuO single crystals. <i>Physica C: Superconductivity and Its Applications</i> , 2015 , 516, 58-61	1.3	19
207	Modelling zirconium hydrides using the special quasirandom structure approach. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 7599-603	3.6	19
206	Structural and optical properties of the recently synthesized (Zr3\(\mathbb{I}\) Ti x)AlC2 MAX phases. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 3386-3393	2.1	19
205	Atomic scale simulations of donor acancy pairs in germanium. <i>Journal of Materials Science: Materials in Electronics</i> , 2007 , 18, 763-768	2.1	19
204	A roadmap of strain in doped anatase TiO. <i>Scientific Reports</i> , 2018 , 8, 12790	4.9	18
203	Hydrogen and nitrogen codoping of anatase TiO for efficiency enhancement in organic solar cells. <i>Scientific Reports</i> , 2017 , 7, 17839	4.9	18
202	Effect of carbon on dopantNacancy pair stability in germanium. <i>Semiconductor Science and Technology</i> , 2011 , 26, 095017	1.8	18
201	Defect processes in F and Cl doped anatase TiO. Scientific Reports, 2019, 9, 19970	4.9	18
200	A thermodynamic approach to self-diffusion in silicon: Evidence of a single diffusion mechanism?. <i>Materials Chemistry and Physics</i> , 2016 , 181, 204-208	4.4	17
199	Modification of superconducting and resistive properties of HoBa2Cu3O7 ingle crystals under application-removal of high hydrostatic pressure. <i>Modern Physics Letters B</i> , 2016 , 30, 1650188	1.6	16
198	Optimized hydrogen positions for aluminium and iron containing hydroxide minerals. <i>Journal of Materials Science</i> , 2007 , 42, 2024-2029	4.3	16
197	Engineering Transport in Manganites by Tuning Local Nonstoichiometry in Grain Boundaries. <i>Advanced Materials</i> , 2019 , 31, e1805360	24	16
196	Influence of atomic structure on the nano-nickel-based catalyst activity produced by solution combustion synthesis in the hydrogenation of maleic acid. <i>Journal of Catalysis</i> , 2017 , 348, 9-21	7.3	15
195	Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches. <i>Applied Physics Reviews</i> , 2017 , 4, 041301	17.3	15
194	Na3V(PO4)2 cathode material for Na ion batteries: Defects, dopants and Na diffusion. <i>Solid State Ionics</i> , 2019 , 336, 75-79	3.3	15

(2021-2014)

193	Vacancy-oxygen defects in silicon: the impact of isovalent doping. <i>Journal of Materials Science: Materials in Electronics</i> , 2014 , 25, 2395-2410	2.1	15	
192	Diffusion in energy materials: Governing dynamics from atomistic modelling. <i>Applied Physics Reviews</i> , 2017 , 4, 031305	17.3	15	
191	Special quasirandom structures for gadolinia-doped ceria and related materials. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 11737-42	3.6	15	
190	A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells. <i>Nature Communications</i> , 2021 , 12, 2660	17.4	15	
189	Different diffusion mechanisms of oxygen in ReBa 2 Cu 3 O 7 (Re = Y, Ho) single crystals. <i>Physica C: Superconductivity and Its Applications</i> , 2017 , 536, 26-29	1.3	14	
188	Fluctuation conductivity and possible pseudogap state in FeAs-based superconductor EuFeAsO0.85F0.15. <i>Materials Research Express</i> , 2016 , 3, 076001	1.7	14	
187	Doping strategies to control A-centres in silicon: insights from hybrid density functional theory. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 8487-92	3.6	14	
186	Modeling indium diffusion in germanium by connecting point defect parameters with bulk properties. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 2113-2116	2.1	14	
185	Defect configurations of high-k cations in germanium. <i>Journal of Applied Physics</i> , 2012 , 111, 023714	2.5	14	
184	Unexpected relationship between interlayer distances and surface/cleavage energies in ETiAl: density functional study. <i>Journal of Physics Condensed Matter</i> , 2011 , 23, 265009	1.8	14	
183	Carbon, oxygen and intrinsic defect interactions in germanium-doped silicon. <i>Semiconductor Science and Technology</i> , 2011 , 26, 105024	1.8	14	
182	Describing oxygen self-diffusion in PuO2 by connecting point defect parameters with bulk properties. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 3287-3290	2.1	13	
181	Connecting bulk properties of germanium with the behavior of self- and dopant diffusion. <i>Materials Science in Semiconductor Processing</i> , 2015 , 36, 179-183	4.3	13	
180	Defect engineering of the oxygen-vacancy clusters formation in electron irradiated silicon by isovalent doping: An infrared perspective. <i>Journal of Applied Physics</i> , 2012 , 112, 123517	2.5	13	
179	LOCALIZATION EFFECT AND PSEUDOGAP IN PRASEODYMIUM DOPED Y1-zPrzBa2Cu3O7-BINGLE CRYSTALS. <i>Modern Physics Letters B</i> , 2012 , 26, 1250163	1.6	13	
178	VacancyIndium clusters in implanted germanium. Chemical Physics Letters, 2010, 490, 38-40	2.5	13	
177	312 MAX Phases: Elastic Properties and Lithiation. <i>Materials</i> , 2019 , 12,	3.5	13	
176	Insights into the physical properties of a new 211 MAX phase Nb2CuC. <i>Journal of Physics and Chemistry of Solids</i> , 2021 , 149, 109759	3.9	13	

175	Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into Materials Electronic Properties and Device Performance. <i>Solar Rrl</i> , 2021 , 5, 2000555	7.1	13
174	Defect Chemistry and Na-Ion Diffusion in NaFe(PO) Cathode Material. <i>Materials</i> , 2019 , 12,	3.5	12
173	Chemically stable new MAX phase VSnC: a damage and radiation tolerant TBC material <i>RSC Advances</i> , 2020 , 10, 43783-43798	3.7	12
172	The encapsulation selectivity for anionic fission products imparted by an electride. <i>Scientific Reports</i> , 2019 , 9, 13612	4.9	12
171	Ultrafast palladium diffusion in germanium. Journal of Materials Chemistry A, 2015, 3, 3832-3838	13	12
170	Defect engineering strategies for germanium. <i>Journal of Materials Science: Materials in Electronics</i> , 2013 , 24, 1741-1747	2.1	12
169	Extrinsic doping in silicon revisited. <i>Applied Physics Letters</i> , 2010 , 96, 242107	3.4	12
168	Toward Defect Engineering Strategies to Optimize Energy and Electronic Materials. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 674	2.6	11
167	G-centers in irradiated silicon revisited: A screened hybrid density functional theory approach. Journal of Applied Physics, 2014 , 115, 183509	2.5	11
166	Interaction of oxygen vacancies in yttrium germanates. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14630-4	3.6	11
165	Production and evolution of A-centers in n-type Si1⊠Gex. <i>Journal of Applied Physics</i> , 2013 , 113, 113507	2.5	11
164	Special quasirandom structures for binary/ternary group IV random alloys. <i>Chemical Physics Letters</i> , 2010 , 493, 97-102	2.5	11
163	Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels. <i>RSC Advances</i> , 2016 , 6, 74018-74027	3.7	11
162	Defects, Diffusion, and Dopants in LiTiO: Atomistic Simulation Study. <i>Materials</i> , 2019 , 12,	3.5	10
161	Defect Process, Dopant Behaviour and Li Ion Mobility in the Li2MnO3 Cathode Material. <i>Energies</i> , 2019 , 12, 1329	3.1	10
160	Copper diffusion in germanium: connecting point defect parameters with bulk properties. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 2693-2696	2.1	10
159	Antisites and anisotropic diffusion in GaAs and GaSb. <i>Applied Physics Letters</i> , 2013 , 103, 142107	3.4	10
158	Impact of isovalent doping on radiation defects in silicon. <i>Journal of Applied Physics</i> , 2013 , 114, 113504	2.5	10

(2015-2013)

157	Co-doping with antimony to control phosphorous diffusion in germanium. <i>Journal of Applied Physics</i> , 2013 , 113, 073704	2.5	10
156	Ab initio modeling of MAX phase solid solutions using the special quasirandom structure approach. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 1173-1180	3.6	10
155	Defect, Diffusion and Dopant Properties of NaNiO2: Atomistic Simulation Study. <i>Energies</i> , 2019 , 12, 309	943.1	9
154	Technetium Encapsulation by A Nanoporous Complex Oxide 12CaO🏿 AlO (C12A7). <i>Nanomaterials</i> , 2019 , 9,	5.4	9
153	Effect of trivalent dopants on local coordination and electronic structure in crystalline and amorphous ZnO. <i>Thin Solid Films</i> , 2014 , 555, 117-121	2.2	9
152	Phosphorous∏acancyŌxygen defects in silicon. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 11384	13	9
151	Anomaly detection in time series data using a combination of wavelets, neural networks and Hilbert transform 2015 ,		9
150	Mechanisms of nonstoichiometry in HfN1⊠. <i>Journal of Applied Physics</i> , 2009 , 106, 083502	2.5	9
149	Interaction of n-type dopants with oxygen in silicon and germanium. <i>Journal of Applied Physics</i> , 2012 , 112, 073706	2.5	9
148	Palladium diffusion in germanium. Journal of Materials Science: Materials in Electronics, 2015, 26, 3787-	37289	8
147	Migration of sodium and lithium interstitials in anatase TiO2. Solid State Ionics, 2018, 315, 40-43	3.3	8
146	Mg6MnO8 as a Magnesium-Ion Battery Material: Defects, Dopants and Mg-Ion Transport. <i>Energies</i> , 2019 , 12, 3213	3.1	8
145	Stress-enhanced lithiation in MAX compounds for battery applications. <i>Applied Materials Today</i> , 2017 , 9, 192-195	6.6	8
144	Impact of isovalent doping on the formation of the C i O i (Si I) n defects in silicon. <i>Solid State Communications</i> , 2017 , 263, 19-22	1.6	8
143	Antisites in III-V semiconductors: Density functional theory calculations. <i>Journal of Applied Physics</i> , 2014 , 116, 023505	2.5	8
142	Self-diffusion in garnet-type LiLaZrO solid electrolytes. <i>Scientific Reports</i> , 2021 , 11, 451	4.9	8
141	Diffusion and Dopant Activation in Germanium: Insights from Recent Experimental and Theoretical Results. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 2454	2.6	7
140	Germanium diffusion in aluminium: connection between point defect parameters with bulk properties. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 8421-8424	2.1	7

139	Effect of electron irradiation on the fluctuation conductivity in YBa2Cu3O7Isingle crystals. Journal of Materials Science: Materials in Electronics, 2018 , 29, 7725-7729	2.1	7
138	Probabilistic kernel machines for predictive monitoring of weld residual stress in energy systems. Engineering Applications of Artificial Intelligence, 2018 , 71, 138-154	7.2	7
137	Defect pair formation in fluorine and nitrogen codoped TiO2. Journal of Applied Physics, 2018, 123, 161	51.03	7
136	Infrared studies of the evolution of the CiOi(SiI) defect in irradiated Si upon isothermal anneals. Journal of Applied Physics, 2016 , 119, 125704	2.5	7
135	Impact of isovalent defect engineering strategies on carbon-related clusters in silicon. <i>Journal of Materials Science: Materials in Electronics</i> , 2013 , 24, 1696-1701	2.1	7
134	Impact of oxygen on the diffusion of silicon in germanium: density functional theory calculations. <i>Semiconductor Science and Technology</i> , 2010 , 25, 045002	1.8	7
133	Intrinsic defect processes in bixbyite sesquioxides. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2007 , 4, 1213-1216		7
132	Stability of impurityNacancy pairs in germanium carbide. <i>Journal of Materials Science: Materials in Electronics</i> , 2008 , 19, 25-28	2.1	7
131	Excess Conductivity of Y0.95Pr0.05Ba2Cu3O7-xSingle Crystals. <i>Acta Physica Polonica A</i> , 2007 , 111, 129-	1836	7
130	Elastic behaviour and radiation tolerance in Nb-based 211 MAX phases. <i>Materials Today Communications</i> , 2020 , 25, 101499	2.5	7
129	Mg diffusion in Si on a thermodynamic basis. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 12022-12027	2.1	7
128	The CiOi(SiI)2 defect in silicon: density functional theory calculations. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 10295-10297	2.1	6
127	Defect processes of M3AlC2 (M = V, Zr, Ta, Ti) MAX phases. <i>Solid State Communications</i> , 2017 , 261, 54-5	6 1.6	6
126	Encapsulation of heavy metals by a nanoporous complex oxide 12CaO E7Al2O3. <i>Journal of Applied Physics</i> , 2019 , 125, 165103	2.5	6
125	Oxygen diffusion in germanium: interconnecting point defect parameters with bulk properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 7378-7380	2.1	6
124	Defects and Dopants in CaFeSi2O6: Classical and DFT Simulations. <i>Energies</i> , 2020 , 13, 1285	3.1	6
123	Parametric Optimisation of Solution Combustion Synthesis Catalysts and Their Application for the Aqueous Hydrogenation of Maleic Acid. <i>Catalysis Letters</i> , 2018 , 148, 764-778	2.8	6
122	Impact of the germanium concentration in the stability of E-centers and A-centers in Si1⊠Gex. Journal of Materials Science: Materials in Electronics, 2013, 24, 2772-2776	2.1	6

(2021-2013)

121	Interaction of metal impurities with native oxygen defects in GeO2. <i>Microelectronic Engineering</i> , 2013 , 104, 37-41	2.5	6
120	In situ trap properties in CCDs: the donor level of the silicon divacancy. <i>Journal of Instrumentation</i> , 2017 , 12, P01025-P01025	1	6
119	VV and VO2 defects in silicon studied with hybrid density functional theory. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 1568-1571	2.1	6
118	Dopant-defect interactions in Ge: Density functional theory calculations. <i>Materials Science in Semiconductor Processing</i> , 2012 , 15, 691-696	4.3	6
117	METALINSULATOR TRANSITION AND THE TEMPERATURE OF THE PSEUDOGAP ANOMALY OPENING IN PRASEODYMIUM DOPED Y1-zPrzBa2Cu3O7-SINGLE CRYSTALS. <i>Modern Physics Letters B</i> , 2013 , 27, 1350029	1.6	6
116	Impact of boron and indium doping on the structural, electronic and optical properties of SnO. <i>Scientific Reports</i> , 2021 , 11, 13031	4.9	6
115	Cadmium trapping by C60 and B-, Si-, and N-doped C60. Journal of Applied Physics, 2019, 125, 054302	2.5	6
114	Effects of Al substitution by Si in TiAlC nanolaminate. <i>Scientific Reports</i> , 2021 , 11, 3410	4.9	6
113	Influence of Preheating Temperature on Solution Combustion Synthesis of Ni N iO Nanocomposites: Mathematical Model and Experiment. <i>International Journal of Self-Propagating High-Temperature Synthesis</i> , 2018 , 27, 207-215	0.7	6
112	Encapsulation of cadmium telluride nanocrystals within single walled carbon nanotubes. <i>Inorganica Chimica Acta</i> , 2019 , 488, 246-254	2.7	5
111	Investigation of oxygen self-diffusion in PuO2 by combining molecular dynamics with thermodynamic calculations. <i>RSC Advances</i> , 2016 , 6, 103641-103649	3.7	5
110	Infrared study of defects in nitrogen-doped electron irradiated silicon. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 2054-2061	2.1	5
109	Atomistic Simulations of the Defect Chemistry and Self-Diffusion of Li-ion in LiAlO2. <i>Energies</i> , 2019 , 12, 2895	3.1	5
108	A Computational Study of Defects, Li-Ion Migration and Dopants in Li2ZnSiO4 Polymorphs. <i>Crystals</i> , 2019 , 9, 563	2.3	5
107	A critical assessment of interatomic potentials for ceria with application to its elastic properties revisited. <i>Journal of Materials Science: Materials in Electronics</i> , 2013 , 24, 4590-4592	2.1	5
106	Defect processes in Li2ZrO3: insights from atomistic modelling. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 11789-11793	2.1	5
105	OPTIMIZING OXYGEN DIFFUSION IN CATHODE MATERIALS FOR SOLID OXIDE FUEL CELLS. <i>Modern Physics Letters B</i> , 2012 , 26, 1250196	1.6	5
104	Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: a theoretical and experimental approach. <i>Scientific Reports</i> , 2021 , 11, 5700	4.9	5

103	Effects of Precursor Concentration in Solvent and Nanomaterials Room Temperature Aging on the Growth Morphology and Surface Characteristics of NiNiO Nanocatalysts Produced by Dendrites Combustion during SCS. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 4925	2.6	5
102	Charge and heat transfer of the Ti3AlC2 MAX phase. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 11478-11481	2.1	5
101	Tin diffusion in germanium: a thermodynamic approach. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 9936-9940	2.1	4
100	Transverse resistance of YBa2Cu3O7Bingle crystals. Current Applied Physics, 2015, 15, 617-621	2.6	4
99	Electronegativity and doping in SiGe alloys. Scientific Reports, 2020, 10, 7459	4.9	4
98	Lithium Storage in Nanoporous Complex Oxide 12CaOllAl2O3 (C12A7). Energies, 2020, 13, 1547	3.1	4
97	The CC(Si) Defect in Silicon from a Density Functional Theory Perspective. <i>Materials</i> , 2018 , 11,	3.5	4
96	Defect Chemistry, Sodium Diffusion and Doping Behaviour in NaFeO Polymorphs as Cathode Materials for Na-Ion Batteries: A Computational Study. <i>Materials</i> , 2019 , 12,	3.5	4
95	Theoretical Modeling of Defects, Dopants, and Diffusion in the Mineral Ilmenite. <i>Minerals (Basel, Switzerland)</i> , 2019 , 9, 610	2.4	4
94	Oxygen self-diffusion in apatites. <i>Monatshefte Fil Chemie</i> , 2012 , 143, 345-353	1.4	4
93	Effect of Praseodymium Concentration on the Excess Conductivity Near the Critical Temperature of Y1🛮 Pr z Ba2Cu3O7 ingle Crystals. <i>Journal of Low Temperature Physics</i> , 2013 , 170, 216-222	1.3	4
92	Di-interstitial defect in silicon revisited. <i>Journal of Applied Physics</i> , 2013 , 114, 193513	2.5	4
91	Localised vibrational mode spectroscopy studies of self-interstitial clusters in neutron irradiated silicon. <i>Journal of Applied Physics</i> , 2013 , 114, 043502	2.5	4
90	Oxygen aggregation kinetics, thermal donors and carbon-oxygen defect formation in silicon containing carbon and tin. <i>Journal of Applied Physics</i> , 2015 , 118, 015704	2.5	4
89	Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection. <i>Chemosensors</i> , 2021 , 9, 120	4	4
88	Defect Properties and Lithium Incorporation in Li2ZrO3. <i>Energies</i> , 2021 , 14, 3963	3.1	4
87	Defect Processes in Halogen Doped SnO2. Applied Sciences (Switzerland), 2021, 11, 551	2.6	4
86	Thermodynamic modelling of fast dopant diffusion in Si. <i>Journal of Applied Physics</i> , 2018 , 123, 161527	2.5	4

(2010-2017)

85	Diffusion coalescence in B a2Cu3O7\(\text{\text{Isingle}}\) single crystals under the application of hydrostatic pressure. <i>Materials Research Express</i> , 2017 , 4, 096001	1.7	3
84	Silicon diffusion in germanium described by connecting point defect parameters with bulk properties. <i>Materials Research Express</i> , 2015 , 2, 036301	1.7	3
83	Response to Comment on Diffusion of n-type dopants in germanium Appl. Phys. Rev. 2, 036101 (2015)]. <i>Applied Physics Reviews</i> , 2015 , 2, 036102	17.3	3
82	Self-Diffusion in Perovskite and Perovskite Related Oxides: Insights from Modelling. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 2286	2.6	3
81	Structural, defect, transport and dopant properties of AgNbO3. ChemNanoMat, 2020, 6, 1337-1345	3.5	3
80	Encapsulation and substitution of Fe in C12A7 (12CaO?7Al2O3). AIP Advances, 2020, 10, 015242	1.5	3
79	Enhanced oxygen diffusion in nano-structured ceria. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 4743-4748	2.1	3
78	Controlling A-center concentration in silicon through isovalent doping: mass action analysis. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 4385-4391	2.1	3
77	Impact of local composition on the energetics of E-centres in SiGe alloys. Scientific Reports, 2019 , 9, 108	8 49 9	3
76	Stability of Coinage Metals Interacting with C. Nanomaterials, 2019 , 9,	5.4	3
75	Oxygen-vacancy defects in electron-irradiated Si: the role of carbon in their behavior. <i>Journal of Materials Science: Materials in Electronics</i> , 2014 , 25, 914-921	2.1	3
74	Infrared signals correlated with self-interstitial clusters in neutron-irradiated silicon. <i>Journal of Materials Science: Materials in Electronics</i> , 2013 , 24, 4328-4331	2.1	3
73	Relaxation effect of pressure on the pseudogap in oxygen underdoped HoBa2Cu3O7Bingle crystals. <i>Journal of Materials Science: Materials in Electronics</i> , 2013 , 24, 5127-5131	2.1	3
72	Gold and silver diffusion in germanium: a thermodynamic approach. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 1966-1970	2.1	3
71	Vacancy-oxygen defects in p-type Si1⊠Gex. <i>Journal of Applied Physics</i> , 2014 , 116, 133502	2.5	3
70	Fundamental Point Defect Properties in Ceramics 2012 , 47-64		3
69	INFLUENCE OF INTRINSIC PINNING ON THE RESISTIVE PROPERTIES OF YBa2Cu3O7-SINGLE CRYSTALS. <i>Modern Physics Letters B</i> , 2013 , 27, 1350220	1.6	3
68	Defect volumes of BO2 doped Y2O3 (B=Ti, Zr, Hf and Ce). <i>Nuclear Instruments & Methods in Physics Research B</i> , 2010 , 268, 3111-3113	1.2	3

67	Defect, transport, and dopant properties of andradite garnet Ca3Fe2Si3O12. <i>AIP Advances</i> , 2020 , 10, 075004	1.5	3
66	IR studies of the oxygen and carbon precipitation processes in electron irradiated tin-doped silicon. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 10298-10312	2.1	2
65	Grain Boundaries: Engineering Transport in Manganites by Tuning Local Nonstoichiometry in Grain Boundaries (Adv. Mater. 4/2019). <i>Advanced Materials</i> , 2019 , 31, 1970026	24	2
64	The Effect of the Precursor Solution Pretreatment on the Properties and Microstructure of the SCS Final Nanomaterials. <i>Applied Sciences (Switzerland)</i> , 2019 , 9, 1200	2.6	2
63	The Interstitial CarbonDioxygen Center in Irradiated Silicon. <i>Crystals</i> , 2020 , 10, 1005	2.3	2
62	Computer modeling investigation of MgV2O4 for Mg-ion batteries. <i>Journal of Applied Physics</i> , 2020 , 127, 035106	2.5	2
61	Oxygen self-diffusion in ThO2under pressure: connecting point defect parameters with bulk properties. <i>Materials Research Express</i> , 2016 , 3, 065501	1.7	2
60	CO2 capture by Li-functionalized silicene. <i>Physica Status Solidi - Rapid Research Letters</i> , 2016 , 10, 458-46	51 2.5	2
59	Temperature dependence of the pseudogap in Y1½PrzBa2Cu3O7&ingle crystals. <i>Journal of Materials Science: Materials in Electronics</i> , 2013 , 24, 1146-1149	2.1	2
58	Modeling defect reactions processes to study the impact of carbon on the production and conversion of A-centers in silicon. <i>Journal of Materials Science: Materials in Electronics</i> , 2014 , 25, 4872-4	8 7 6	2
57	Mechanism of dopant-vacancy association in Equartz GeO2. <i>Journal of Applied Physics</i> , 2013 , 113, 08371	62.5	2
56	COEXISTENCE OF DIFFERENT TYPES OF TRANSVERSE CONDUCTIVITY IN Y1-xPrxBa2Cu3 O7-II SINGLE CRYSTALS WITH DIFFERENT PRASEODYMIUM CONCENTRATIONS. <i>Modern Physics Letters B</i> , 2013 , 27, 1350198	1.6	2
55	Impact of Carbon on the Diffusion of Donor Atoms in Germanium. <i>Defect and Diffusion Forum</i> , 2009 , 289-292, 689-696	0.7	2
54	Oxygen Diffusion in Ordered/Disordered Double Perovskites. <i>ECS Transactions</i> , 2011 , 35, 1151-1154	1	2
53	Electronic properties of the SnPbO alloy and band alignment of the SnO/PbO system: a DFT study. <i>Scientific Reports</i> , 2020 , 10, 16828	4.9	2
52	Hydrogen Adsorption on Ru-Encapsulated, -Doped and -Supported Surfaces of C60. <i>Surfaces</i> , 2020 , 3, 408-422	2.9	2
51	Influence of Uniform Compression on the Temperature Dependence of the Pseudogap of Medium-Praseodymium-Doped Y 1 Pr x Ba 2 Cu 3 O 7 Is ingle Crystals. <i>Journal of Low Temperature Physics</i> , 2021 , 203, 430-436	1.3	2
50	Defects, diffusion and dopants in the ceramic mineral lime- Feldsparl <i>Journal of Asian Ceramic Societies</i> , 2021 , 9, 570-577	2.4	2

(2021-2016)

49	Activation volumes of oxygen self-diffusion in fluorite structured oxides. <i>Materials Research Express</i> , 2016 , 3, 105504	1.7	2
48	Influence of defects on anisotropy of electrical resistivity in (hbox {YBa}_2hbox {Cu}_3hbox {O}_{7-delta}). <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 7708-7714	2.1	2
47	Behavior of Li-ion on the surface of Ti3C2ll (T = O, S, Se, F, Cl, Br) MXene: Diffusion barrier and conductive pathways. <i>Journal of Applied Physics</i> , 2021 , 130, 095101	2.5	2
46	Effect of high pressure on temperature dependences of the resistivity in the ab-plane of Y0.77Pr0.23Ba2Cu3O7-Bingle crystals. <i>Journal of Materials Science: Materials in Electronics</i> ,1	2.1	2
45	O vacancy formation in (Pr/Gd)BaCoO and the role of antisite defects. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 11455-11459	3.6	1
44	Effect of Hafnium Impurities on the Magnetoresistance of (hbox {YBa}_{2}hbox {Cu}_{3}hbox {O}_{7-delta }). <i>Journal of Low Temperature Physics</i> , 2017 , 186, 285-293	1.3	1
43	Atomic structure and electronic properties of hydrogenated X (=C, Si, Ge, and Sn) doped TiO2: A theoretical perspective. <i>AIP Advances</i> , 2020 , 10, 115316	1.5	1
42	The COV defect in neutron irradiated silicon: An infrared spectroscopy study. <i>Materials Science in Semiconductor Processing</i> , 2018 , 75, 283-287	4.3	1
41	Isovalent doping and the CiOi defect in germanium. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 4261-4265	2.1	1
40	Relative concentrations of carbon related defects in silicon. <i>Journal of Materials Science: Materials in Electronics</i> , 2016 , 27, 11268-11272	2.1	1
39	Strategies to suppress A-center formation in silicon and germanium from a mass action analysis viewpoint. <i>Journal of Materials Science: Materials in Electronics</i> , 2014 , 25, 1388-1392	2.1	1
38	Engineering VO, CiOi and CiCs defects in irradiated Si through Ge and Pb doping. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 2248-2256	2.1	1
37	Effect of Long Aging on the Resistivity Properties of Aluminum Doped YBa2Cu3 Al y O7 ingle Crystals with a Given Twin Boundary Topology. <i>Journal of Low Temperature Physics</i> , 2014 , 174, 214-221	1.3	1
36	The Ci(SiI)n defect in neutron-irradiated silicon. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 930-934	2.1	1
35	Composition variation and electron irradiation effects on the fluctuation conductivity in Y1½PrzBa2Cu3O7Bingle crystals. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 19429-1	9436	1
34	Encapsulation of volatile fission products in a two-dimensional dicalcium nitride electride. <i>Journal of Applied Physics</i> , 2020 , 128, 045112	2.5	1
33	Influence of high pressure on the temperature dependence of electrical resistivity of Y1-xPrxBa2Cu3O7-Bingle crystals. <i>Solid State Communications</i> , 2021 , 327, 114205	1.6	1
32	Effect of hydrogen on the electrical resistance of NbSe2 in a wide temperature range. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 13588-13593	2.1	1

31	Defect and dopant properties in CaMnO3. AIP Advances, 2021, 11, 055106	1.5	1
30	Substitutional carbon-dioxygen center in irradiated silicon. <i>Materials Science in Semiconductor Processing</i> , 2021 , 127, 105661	4.3	1
29	One-dimensional yttrium silicide electride (Y5Si3:e)Ifor encapsulation of volatile fission products. <i>Journal of Applied Physics</i> , 2021 , 129, 245105	2.5	1
28	Impact of oxygen on gallium doped germanium. AIP Advances, 2021, 11, 065122	1.5	1
27	Ultrafast epitaxial growth of CuO nanowires using atmospheric pressure plasma with enhanced electrocatalytic and photocatalytic activities. <i>Nano Select</i> ,	3.1	1
26	Li-diffusion pathways in Zr2CO2 and Zr2CS2 MXenes using the Bond Valence Sum model. <i>Computational Materials Science</i> , 2022 , 201, 110868	3.2	1
25	Electromagnetic excitation in complex materials. <i>Journal of Materials Science: Materials in Electronics</i> , 2014 , 25, 4273-4277	2.1	О
24	VaporliquidBolid growth and properties of one dimensional PbO and PbO/SnO2 nanowires. <i>Materials Advances</i> , 2022 , 3, 1695-1702	3.3	O
23	Theoretical investigation of nitrogen-vacancy defects in silicon. AIP Advances, 2022, 12, 025112	1.5	O
22	Defects, diffusion, dopants and encapsulation of Na in NaZr2(PO4)3. <i>Materialia</i> , 2021 , 16, 101039	3.2	О
21	Interstitial lithium doping in SrTiO3. <i>AIP Advances</i> , 2021 , 11, 075029	1.5	0
21	Interstitial lithium doping in SrTiO3. <i>AIP Advances</i> , 2021 , 11, 075029 Defects, diffusion and dopants in LiSnO. <i>Heliyon</i> , 2021 , 7, e07460	1.5 3.6	0
21 20 19			o o o
20	Defects, diffusion and dopants in LiSnO. <i>Heliyon</i> , 2021 , 7, e07460 Structural, Electronic, and Optical Properties of Group 6 Doped Anatase TiO2: A Theoretical	3.6	О
20	Defects, diffusion and dopants in LiSnO. <i>Heliyon</i> , 2021 , 7, e07460 Structural, Electronic, and Optical Properties of Group 6 Doped Anatase TiO2: A Theoretical Approach. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 1657	3.6 2.6	0
20 19 18	Defects, diffusion and dopants in LiSnO. <i>Heliyon</i> , 2021 , 7, e07460 Structural, Electronic, and Optical Properties of Group 6 Doped Anatase TiO2: A Theoretical Approach. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 1657 Nitrogen-vacancy defects in germanium. <i>AIP Advances</i> , 2022 , 12, 045110 Optical response, lithiation and charge transfer in Sn-based 211 MAX phases with electron	3.6 2.6	o o o
20 19 18	Defects, diffusion and dopants in LiSnO. <i>Heliyon</i> , 2021 , 7, e07460 Structural, Electronic, and Optical Properties of Group 6 Doped Anatase TiO2: A Theoretical Approach. <i>Applied Sciences (Switzerland)</i> , 2021 , 11, 1657 Nitrogen-vacancy defects in germanium. <i>AIP Advances</i> , 2022 , 12, 045110 Optical response, lithiation and charge transfer in Sn-based 211 MAX phases with electron localization function. <i>Journal of Materials Research and Technology</i> , 2022 , 18, 2470-2479 Mg-ion diffusion on the surface of Ti3C2S2 MXene. <i>Journal of Physics and Chemistry of Solids</i> , 2022 ,	3.6 2.6 1.5	o o o o

LIST OF PUBLICATIONS

13	Evolution of the metalihsulator transition in oxygen nonstoichiometric YBa2Cu3O7Isingle crystals under pressure. <i>Journal of Materials Science: Materials in Electronics</i> , 2013 , 24, 3132-3135	2.1
12	Effect of Structural Relaxation on the Metallhsulator Transition in Heavily Underdoped YBa(_2)Cu(_3)O(_{7-delta}) Single Crystals. <i>Journal of Low Temperature Physics</i> , 2015 , 180, 277-283	1.3
11	Transverse resistance in HoBa2Cu3O7Isingle crystals. <i>Modern Physics Letters B</i> , 2015 , 29, 1550232	1.6
10	Semi-empirical modelling of the di-interstitial defect in silicon. <i>Journal of Materials Science:</i> Materials in Electronics, 2014 , 25, 5441-5445	2.1
9	Atomic-scale computer simulation of functional materials: methodologies and applications 2012, 643-	662e
8	Fundamental Point Defect Properties in Ceramics 2020 , 50-73	
7	Relaxation of the electric resistance in YBa2Cu3O7\(\mathbb{B}\) single crystals at room temperature. <i>Modern Physics Letters B</i> , 2017 , 31, 1750179	1.6
6	Mayenite Electrides and Their Doped Forms for Oxygen Reduction Reaction in Solid Oxide Fuel Cells. <i>Energies</i> , 2020 , 13, 4978	3.1
5	Atomic-scale studies of garnet-type Mg3Fe2Si3O12: Defect chemistry, diffusion and dopant properties. <i>Journal of Power Sources Advances</i> , 2020 , 3, 100016	3.3
4	Defects, Diffusion and Dopants in Sillimanite. <i>Minerals (Basel, Switzerland)</i> , 2020 , 10, 857	2.4
3	Defects and Calcium Diffusion in Wollastonite. <i>Chemistry</i> , 2020 , 2, 937-946	2.1
2	Computational study of energy materials 2018 , 263-281	
1	Oxygen migration in doped BaGdInO4. <i>Solid State Ionics</i> , 2021 , 369, 115729	3.3