Itandehui Gris SÃ;nchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/362002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D-M3: high-spatial-resolution spectroscopy with extreme AO and 3D-printed micro-lenslets. Applied Optics, 2021, 60, D108.	1.8	4
2	Modal noise mitigation for high-precision spectroscopy using a photonic reformatter. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3713-3725.	4.4	4
3	True-Time Delay Line Based on Dispersion-Flattened 19-Core Photonic Crystal Fiber. Journal of Lightwave Technology, 2020, 38, 6237-6246.	4.6	8
4	Computational optical imaging with a photonic lantern. Nature Communications, 2020, 11, 5217.	12.8	23
5	A Multi-Core Fibre Photonic Lantern-Based Spectrograph for Raman Spectroscopy. IEEE Photonics Technology Letters, 2020, 32, 395-398.	2.5	6
6	Diffraction-limited integral-field spectroscopy for extreme adaptive optics systems with the multicore fiber-fed integral-field unit. Journal of Astronomical Telescopes, Instruments, and Systems, 2020, 6, .	1.8	9
7	Multi-core fibre–fed integral field spectrograph (MCIFU) – III: an ultrafast laser inscribed photonic reformatter and mask. , 2020, , .		1
8	An innovative integral field unit upgrade with 3D-printed micro-lenses for the RHEA at Subaru. , 2020, ,		2
9	Modal noise mitigation in a photonic lantern fed near-IR spectrograph. , 2020, , .		0
10	Multi-core fibre-fed integral field spectrograph (MCIFU) IV: the fiber link. , 2020, , .		0
11	Optical fiber modal noise suppression in the NIR region using multicore fiber and photonic lanterns. , 2018, , .		3
12	Multiplexed single-mode wavelength-to-time mapping of multimode light. Nature Communications, 2017, 8, 14080.	12.8	16
13	Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4950-4957.	4.4	19
14	Multicore fibre photonic lanterns for precision radial velocity science. Monthly Notices of the Royal Astronomical Society, 2017, , .	4.4	6
15	Divide and conquer: an efficient solution to highly multimoded photonic lanterns from multicore fibres. Optics Express, 2017, 25, 17530.	3.4	17
16	Development of an efficient photonic device for the reformatting of celestial light. Proceedings of SPIE, 2016, , .	0.8	0
17	The Airy fibre: designing fibres backwards. , 2016, , .		0

18 Modal noise characterisation of a hybrid reformatter. , 2016, , .

2

Itandehui Gris SÃinchez

#	Article	IF	CITATIONS
19	The Airy fiber: an optical fiber that guides light diffracted by a circular aperture. Optica, 2016, 3, 270.	9.3	18
20	Efficient photonic reformatting of stellar light for high precision spectroscopy. , 2016, , .		0
21	Tapered Mode Multiplexers for Single Mode to Multi Mode Fibre Mode Transitions. , 2015, , .		1
22	Reconstructing Core-to-Core Variations of Propagation Constant in Coupled Multicore Fiber for Quantum Walks. , 2015, , .		0
23	The photonic lantern. Advances in Optics and Photonics, 2015, 7, 107.	25.5	257
24	New multicore low mode noise scrambling fiber for applications in high-resolution spectroscopy. , 2014, , .		5
25	The Photonic Lantern. , 2014, , .		0
26	Characterizing the variation of propagation constants in multicore fiber. Optics Express, 2014, 22, 25689.	3.4	11
27	Adiabatically-tapered fiber mode multiplexers. Optics Express, 2014, 22, 608.	3.4	131
28	Core-to-core uniformity improvement in multi-core fiber Bragg gratings. Proceedings of SPIE, 2014, , .	0.8	2
29	PIMMS échelle: the next generation of compact diffraction limited spectrographs for arbitrary input beams. , 2014, , .		4
30	Fibre-based mode multiplexers. , 2014, , .		1
31	All-fibre mode multiplexers. Proceedings of SPIE, 2013, , .	0.8	0
32	Time-Dependent Degradation of Photonic Crystal Fiber Attenuation Around OH Absorption Wavelengths. Journal of Lightwave Technology, 2012, 30, 3597-3602.	4.6	17
33	2.04 μm light generation from a Ti:Sapphire laser using a Photonic Crystal Fiber with low OH loss. , 2011, , .		0
34	Highly-efficient, octave spanning soliton self-frequency shift using a specialized photonic crystal fiber with low OH loss. Optics Express, 2011, 19, 17766.	3.4	46
35	Reducing spectral attenuation in small-core photonic crystal fibers. Optical Materials Express, 2011, 1, 179.	3.0	18
36	Reducing spectral attenuation in solid-core photonic crystal fibers. , 2010, , .		0

#	Article	IF	CITATIONS
37	Highly-Efficient, Octave Spanning Soliton Self-Frequency Shift Using a Photonic Crystal Fiber with Low OH Loss. , 2010, , .		0