Yunqing Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3619936/publications.pdf

Version: 2024-02-01

257357 330025 4,621 38 24 37 h-index citations g-index papers 39 39 39 5048 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sustainable polymers from renewable resources. Nature, 2016, 540, 354-362.	13.7	1,902
2	Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chemical Communications, 2015, 51, 6459-6479.	2.2	471
3	Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Progress in Polymer Science, 2017, 64, 1-22.	11.8	294
4	Chemoselective Polymerizations from Mixtures of Epoxide, Lactone, Anhydride, and Carbon Dioxide. Journal of the American Chemical Society, 2016, 138, 4120-4131.	6.6	200
5	Selective Polymerization Catalysis: Controlling the Metal Chain End Group to Prepare Block Copolyesters. Journal of the American Chemical Society, 2015, 137, 12179-12182.	6.6	158
6	Antibacterial Polypeptide-Grafted Chitosan-Based Nanocapsules As an "Armed―Carrier of Anticancer and Antiepileptic Drugs. ACS Macro Letters, 2013, 2, 1021-1025.	2.3	140
7	Di-magnesium and zinc catalysts for the copolymerization of phthalic anhydride and cyclohexene oxide. Polymer Chemistry, 2014, 5, 6068-6075.	1.9	137
8	Multifunctional Homopolymer Vesicles for Facile Immobilization of Gold Nanoparticles and Effective Water Remediation. ACS Nano, 2014, 8, 5022-5031.	7.3	118
9	Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. Journal of Materials Chemistry A, 2016, 4, 12088-12097.	5.2	102
10	Probing into Homopolymer Self-Assembly: How Does Hydrogen Bonding Influence Morphology?. Macromolecules, 2013, 46, 194-203.	2.2	101
11	Big Is Beautiful: Enhanced saRNA Delivery and Immunogenicity by a Higher Molecular Weight, Bioreducible, Cationic Polymer. ACS Nano, 2020, 14, 5711-5727.	7.3	92
12	Pentablock Copolymer from Tetracomponent Monomer Mixture Using a Switchable Dizinc Catalyst. Macromolecules, 2018, 51, 5346-5351.	2.2	90
13	Preparation and Mechanism Insight of Nuclear Envelope-like Polymer Vesicles for Facile Loading of Biomacromolecules and Enhanced Biocatalytic Activity. ACS Nano, 2014, 8, 6644-6654.	7. 3	78
14	Multiblock Polyesters Demonstrating High Elasticity and Shape Memory Effects. Macromolecules, 2018, 51, 2466-2475.	2.2	71
15	â€~Switch' catalysis: from monomer mixtures to sequence-controlled block copolymers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170066.	1.6	62
16	Antibacterial vesicles by direct dissolution of a block copolymer in water. Polymer Chemistry, 2013, 4, 255-259.	1.9	60
17	Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. Journal of Controlled Release, 2021, 338, 201-210.	4.8	53
18	How does a tiny terminal alkynyl end group drive fully hydrophilic homopolymers to self-assemble into multicompartment vesicles and flower-like complex particles?. Polymer Chemistry, 2014, 5, 5077-5088.	1.9	47

#	Article	IF	CITATIONS
19	Orthogonal functionalization of alternating polyesters: selective patterning of (AB) _n sequences. Chemical Science, 2019, 10, 9974-9980.	3.7	44
20	Antibacterial high-genus polymer vesicle as an "armed―drug carrier. Journal of Materials Chemistry B, 2013, 1, 5496.	2.9	43
21	Polymersome Wound Dressing Spray Capable of Bacterial Inhibition and H ₂ S Generation for Complete Diabetic Wound Healing. Chemistry of Materials, 2021, 33, 7972-7985.	3.2	43
22	Fully Bio-Based High-Performance Thermosets with Closed-Loop Recyclability. ACS Sustainable Chemistry and Engineering, 2022, 10, 1036-1046.	3.2	42
23	Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes. Journal of Controlled Release, 2020, 326, 365-386.	4.8	37
24	Recent Developments in Ring-Opening Copolymerization of Epoxides With CO2 and Cyclic Anhydrides for Biomedical Applications. Frontiers in Chemistry, 2021, 9, 647245.	1.8	29
25	Recent advances in the implant-based drug delivery in otorhinolaryngology. Acta Biomaterialia, 2020, 108, 46-55.	4.1	28
26	Enzyme activated photodynamic therapy for methicillin-resistant Staphylococcus aureus infection both invitro and in vivo. Journal of Photochemistry and Photobiology B: Biology, 2014, 136, 72-80.	1.7	25
27	Influences of a Dizinc Catalyst and Bifunctional Chain Transfer Agents on the Polymer Architecture in the Ring-Opening Polymerization of Îμ-Caprolactone. Macromolecules, 2015, 48, 2407-2416.	2.2	25
28	Polynuclear alkoxy–zinc complexes of bowl-shaped macrocycles and their use in the copolymerisation of cyclohexene oxide and CO ₂ . Dalton Transactions, 2019, 48, 4887-4893.	1.6	25
29	Challenges and Perspective on Ring-Opening Polymerization-Induced Self-Assembly. Acta Chimica Sinica, 2020, 78, 719.	0.5	23
30	Metabolically Active, Fully Hydrolysable Polymersomes. Angewandte Chemie - International Edition, 2019, 58, 4581-4586.	7.2	20
31	Giant Polymer Vesicles with a Latticelike Membrane. ACS Macro Letters, 2021, 10, 1015-1022.	2.3	16
32	Recent progress on charge-reversal polymeric nanocarriers for cancer treatments. Biomedical Materials (Bristol), 2021, 16, 042010.	1.7	14
33	Bioreducible, arginine-rich polydisulfide-based siRNA nanocomplexes with excellent tumor penetration for efficient gene silencing. Biomaterials Science, 2021, 9, 5275-5292.	2.6	10
34	Homopolymer nanobowls with a controlled size and denting degree. Polymer Chemistry, 2022, 13, 1236-1242.	1.9	6
35	Fluorescent homopolypeptide toroids. Polymer Chemistry, 2022, 13, 1495-1501.	1.9	6
36	π–π Interlocking Effect for Designing Biodegradable Nanorods with Controlled Lateral Surface Curvature. Chemistry of Materials, 2022, 34, 4937-4945.	3.2	6

Yunqing Zhu

#	Article	lF	CITATIONS
37	Metabolically Active, Fully Hydrolysable Polymersomes. Angewandte Chemie, 2019, 131, 4629-4634.	1.6	3
38	Effect of Functionalized MWCNTs on the Tribological Properties of Polyimide Film. Advanced Materials Research, 2011, 340, 88-94.	0.3	0