Shanju Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3619740/publications.pdf

Version: 2024-02-01

331259 288905 1,659 54 21 40 h-index citations g-index papers 55 55 55 2118 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Self-assembly of supramolecular complexes of charged conjugated polymers and imidazolium-based ionic liquid crystals. Giant, 2022, 9, 100088.	2.5	5
2	Photonic liquid crystals of graphene oxide for fast membrane nanofiltration. Carbon Trends, 2022, 7, 100150.	1.4	2
3	Chromatic Conductive Polymer Nanocomposites of Poly (p-Phenylene Ethynylene)s and Single-Walled Carbon Nanotubes. Journal of Composites Science, 2021, 5, 158.	1.4	2
4	Dynamic Gelation of Conductive Polymer Nanocomposites Consisting of Poly(3-hexylthiophene) and ZnO Nanowires. Journal of Composites Science, 2021, 5, 199.	1.4	1
5	Amyloid-intercalated graphene oxide membranes for enhanced nanofiltration. Carbon Trends, 2021, 5, 100135.	1.4	4
6	Supramolecular Assembly of Oriented Spherulitic Crystals of Conjugated Polymers Surrounding Carbon Nanotube Fibers. Macromolecular Rapid Communications, 2019, 40, 1900098.	2.0	8
7	Directed Assembly of Hybrid Nanomaterials and Nanocomposites. Advanced Materials, 2018, 30, e1705794.	11.1	74
8	Ringâ€Banded Spherulitic Crystals of Poly(3â€butylthiophene) via Controlled Solvent Evaporation. Macromolecular Chemistry and Physics, 2018, 219, 1800204.	1.1	9
9	Ordered Nanostructures of Carbon Nanotube–Polymer Composites from Lyotropic Liquid Crystal Templating. Macromolecular Chemistry and Physics, 2018, 219, 1800197.	1.1	9
10	Multi-Scale Assembly of Polythiophene-Surfactant Supramolecular Complexes for Charge Transport Anisotropy. Macromolecules, 2017, 50, 1047-1055.	2.2	18
11	Solution-Based Large-Area Assembly of Coaxial Inorganic–Organic Hybrid Nanowires for Fast Ambipolar Charge Transport. ACS Applied Materials & Interfaces, 2017, 9, 16397-16403.	4.0	8
12	Hydrogen-Bonding-Directed Ordered Assembly of Carboxylated Poly(3-Alkylthiophene)s. ACS Omega, 2017, 2, 8526-8535.	1.6	19
13	Interfacial crystallization of isotactic polypropylene surrounding macroscopic carbon nanotube and graphene fibers. Polymer, 2016, 91, 136-145.	1.8	53
14	Graphene-Induced Oriented Interfacial Microstructures in Single Fiber Polymer Composites. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13620-13626.	4.0	38
15	Nematic Order Drives Macroscopic Patterns of Graphene Oxide in Drying Drops. Langmuir, 2014, 30, 14631-14637.	1.6	24
16	Dynamic Interactions between Poly(3-hexylthiophene) and Single-Walled Carbon Nanotubes in Marginal Solvent. Journal of Physical Chemistry B, 2014, 118, 6038-6046.	1.2	25
17	Effect of surface-modified zinc oxide nanowires on solution crystallization kinetics of poly(3-hexylthiophene). Polymer, 2014, 55, 2008-2013.	1.8	13
18	Anisotropic core–shell nanocomposites by direct covalent attachment of a side-functionalized poly(3-hexylthiophene) onto ZnO nanowires. Polymer, 2013, 54, 7004-7008.	1.8	9

#	Article	IF	CITATIONS
19	In Situ Study of Dynamic Conformational Transitions of a Water-Soluble Poly(3-hexylthiophene) Derivative by Surfactant Complexation. Journal of Physical Chemistry B, 2012, 116, 12887-12894.	1.2	29
20	Directed Selfâ€Assembly of Hybrid Oxide/Polymer Core/Shell Nanowires with Transport Optimized Morphology for Photovoltaics. Advanced Materials, 2012, 24, 82-87.	11.1	37
21	Lyotropic Self-Assembly of High-Aspect-Ratio Semiconductor Nanowires of Single-Crystal ZnO. Langmuir, 2011, 27, 11616-11621.	1.6	28
22	Thermally switchable thin films of an ABC triblock copolymer of poly(n-butyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 2011, 257, 9673-9677.	0 627 Td (3.1	methacrylat 5
23	Liquid Crystalline Order and Magnetocrystalline Anisotropy in Magnetically Doped Semiconducting ZnO Nanowires. ACS Nano, 2011, 5, 8357-8364.	7.3	38
24	Fluorineâ€containing linear block terpolymers: Synthesis and selfâ€assembly in solution. Journal of Polymer Science Part A, 2011, 49, 414-422.	2.5	9
25	Surfaceâ€Induced Polymer Crystallization in High Volume Fraction Aligned Carbon Nanotube–Polymer Composites. Macromolecular Chemistry and Physics, 2010, 211, 1003-1011.	1.1	41
26	î³â€Form Transcrystals of Poly(propylene) Induced by Individual Carbon Nanotubes. Macromolecular Chemistry and Physics, 2010, 211, 1348-1354.	1.1	16
27	Nanocomposites of Carbon Nanotube Fibers Prepared by Polymer Crystallization. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1642-1647.	4.0	82
28	Microwave Makes Carbon Nanotubes Less Defective. ACS Nano, 2010, 4, 1716-1722.	7.3	86
29	Ordering in a Droplet of an Aqueous Suspension of Single-Wall Carbon Nanotubes on a Solid Substrate. Langmuir, 2010, 26, 2107-2112.	1.6	54
30	Lyotropic Hexagonal Ordering in Aqueous Media by Conjugated Hairy-Rod Supramolecules. Macromolecules, 2010, 43, 7549-7555.	2.2	25
31	Polymerâ€Infiltrated Aligned Carbon Nanotube Fibers by in situ Polymerization. Macromolecular Rapid Communications, 2009, 30, 1936-1939.	2.0	22
32	Polymer transcrystallinity induced by carbon nanotubes. Polymer, 2008, 49, 1356-1364.	1.8	207
33	Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition. Journal of Materials Science, 2008, 43, 4356-4362.	1.7	96
34	Carbon Nanotubes as Liquid Crystals. Small, 2008, 4, 1270-1283.	5.2	136
35	Macroscopic Fibers of Wellâ€Aligned Carbon Nanotubes by Wet Spinning. Small, 2008, 4, 1217-1222.	5.2	157
36	Shaping Polymer Particles by Carbon Nanotubes. Macromolecular Rapid Communications, 2008, 29, 557-561.	2.0	17

#	Article	IF	CITATIONS
37	Mesogenicity Drives Fractionation in Lyotropic Aqueous Suspensions of Multiwall Carbon Nanotubes. Nano Letters, 2006, 6, 568-572.	4.5	77
38	Phase Separation and Organisation of Colloidal Spheres Suspended in Sheared Lyotropic Liquid-Crystalline Polymers. Macromolecular Rapid Communications, 2005, 26, 911-914.	2.0	6
39	Nature of disclination cores in liquid crystals. Liquid Crystals, 2005, 32, 69-75.	0.9	10
40	Optical Microscopy Study for Director Patterns around Disclinations in Side-Chain Liquid Crystalline Polymer Films. Journal of Physical Chemistry B, 2005, 109, 13195-13199.	1.2	10
41	Atomic Force Microscopy Study for Supermolecular Microstructures in Side-Chain Liquid Crystalline Polymer Films. Langmuir, 2005, 21, 3539-3543.	1.6	8
42	Ordering-induced micro-bands in thin films of a main-chain liquid crystalline chloro-poly(aryl ether) Tj ETQq0 0 0 r	gBT/Overl	ock 10 Tf 50
43	Synthesis and solid state structures of macromolecular cylindrical brushes with varying side chain length. Polymer, 2004, 45, 4009-4015.	1.8	27
44	Surface coatings of PEO–PPO–PEO block copolymers on native and polystyrene-coated silicon wafers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 246, 81-89.	2.3	21
45	Disclinations and Their Interactions in Thin Films of Side-Chain Liquid Crystalline Polymers. Macromolecules, 2004, 37, 390-396.	2.2	19
46	Shear-Induced Spiral-Like Morphology of a Main-Chain Liquid Crystalline Poly(aryl ether ketone). Macromolecular Rapid Communications, 2001, 22, 1168.	2.0	7
47	Homoepitaxial Crystallization in Films of a Thermotropic Liquid Crystalline Chloro-Poly(aryl ether) Tj ETQq1 1 0.78	34314 rgB	T <i>[</i> Overlock 1
48	Synthesis and thermotropic liquid crystalline behaviour of novel poly(aryl ether ketone)s with a lateral methoxy group. Macromolecular Chemistry and Physics, 2000, 201, 649-655.	1.1	15
49	Formation of a metastable phase induced by a liquid crystalline phase in a novel chloropoly(aryl ether) Tj ETQq1 1	0,784314 2.0	l rgBT /Overlo
50	Preliminary communication - The synthesis and thermotropic liquid crystalline behaviour of novel main chain poly(aryl ether ketone)s containing a lateral phenyl group. Liquid Crystals, 1998, 24, 311-314.	0.9	5
51	Title is missing!. Journal of Materials Science Letters, 1997, 16, 1813-1815.	0.5	1
52	The synthesis and thermotropic liquid crystalline behavior of the novel poly(aryl ether ketone)s containing chloro-side group. Polymer Bulletin, 1997, 38, 621-625.	1.7	11
53	Effect of crystal-disrupting chlorohydroquinone on the first-order transitions of poly(aryl ether) Tj ETQq $1\ 1\ 0.784$	314 rgBT / 2.0	Ogerlock 10
54	Sustainable and Repulpable Barrier Coatings for Fiber-Based Materials for Food Packaging: A Review. Frontiers in Materials, 0, 9, .	1.2	13