List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3619259/publications.pdf Version: 2024-02-01

I ENE LESDEDSEN

#	Article	IF	CITATIONS
1	Technologically relevant <i>Bacillus</i> species and microbial safety of West African traditional alkaline fermented seed condiments. Critical Reviews in Food Science and Nutrition, 2022, 62, 871-888.	5.4	20
2	Occurrence and Identification of Yeasts in Production of White-Brined Cheese. Microorganisms, 2022, 10, 1079.	1.6	12
3	Spoilage Potential of Contaminating Yeast Species Kluyveromyces marxianus, Pichia kudriavzevii and Torulaspora delbrueckii during Cold Storage of Skyr. Foods, 2022, 11, 1776.	1.9	4
4	Multifunctional properties and safety evaluation of lactic acid bacteria and yeasts associated with fermented cereal doughs. World Journal of Microbiology and Biotechnology, 2021, 37, 34.	1.7	8
5	In vitro properties of potential probiotic lactic acid bacteria originating from Chanaian indigenous fermented milk products. World Journal of Microbiology and Biotechnology, 2021, 37, 52.	1.7	15
6	In-vitro study of Limosilactobacillus fermentum PCC adhesion to and integrity of the Caco-2 cell monolayers as affected by pectins. Journal of Functional Foods, 2021, 79, 104395.	1.6	3
7	Sustainable Production of African Traditional Beers With Focus on Dolo, a West African Sorghum-Based Alcoholic Beverage. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	14
8	Debaryomyces hansenii Strains Isolated From Danish Cheese Brines Act as Biocontrol Agents to Inhibit Germination and Growth of Contaminating Molds. Frontiers in Microbiology, 2021, 12, 662785.	1.5	10
9	The utilisation of amino acids by Debaryomyces hansenii and Yamadazyma triangularis associated with cheese. International Dairy Journal, 2021, 121, 105135.	1.5	9
10	The Effects of NaCl and Temperature on Growth and Survival of Yeast Strains Isolated from Danish Cheese Brines. Current Microbiology, 2020, 77, 3377-3384.	1.0	7
11	Probiotic potential of Saccharomyces cerevisiae and Kluyveromyces marxianus isolated from West African spontaneously fermented cereal and milk products. Yeast, 2020, 37, 403-412.	0.8	13
12	Occurrence of Yeasts in White-Brined Cheeses: Methodologies for Identification, Spoilage Potential and Good Manufacturing Practices. Frontiers in Microbiology, 2020, 11, 582778.	1.5	25
13	Microbial Safety of Milk Production and Fermented Dairy Products in Africa. Microorganisms, 2020, 8, 752.	1.6	56
14	Diversity in NaCl tolerance of Lactococcus lactis strains from dl-starter cultures for production of semi-hard cheeses. International Dairy Journal, 2020, 105, 104673.	1.5	5
15	The quorumâ€sensing molecule 2â€phenylethanol impaired conidial germination, hyphal membrane integrity and growth of <i>Penicillium expansum</i> and <i>Penicillium nordicum</i> . Journal of Applied Microbiology, 2020, 129, 278-286.	1.4	16
16	Technological properties of indigenous <i>Lactococcus lactis</i> strains isolated from Lait caillé, a spontaneous fermented milk from Burkina Faso. Journal of Dairy Research, 2020, 87, 110-116.	0.7	7
17	PREDOMINANCE OF BACILLUS SPP. DURING THE PRODUCTION OF MANTCHOUA, A TRADITIONAL KAPOK SEED FERMENTED CONDIMENT FROM BURKINA FASO. Journal of Microbiology, Biotechnology and Food Sciences, 2020, 9, 1009-1015.	0.4	4
18	Occurrence and Importance of Yeasts in Indigenous Fermented Food and Beverages Produced in Sub-Saharan Africa. Frontiers in Microbiology, 2019, 10, 1789.	1.5	48

#	Article	IF	CITATIONS
19	Impact of botanical fermented foods on metabolic biomarkers and gut microbiota in adults with metabolic syndrome and type 2 diabetes: a systematic review protocol. BMJ Open, 2019, 9, e029242.	0.8	7
20	Effect of potato fiber on survival of Lactobacillus species at simulated gastric conditions and composition of the gut microbiota in vitro. Food Research International, 2019, 125, 108644.	2.9	25
21	Environmental heterogeneity of Staphylococcus species from alkaline fermented foods and associated toxins and antimicrobial resistance genetic elements. International Journal of Food Microbiology, 2019, 311, 108356.	2.1	22
22	Identification of the predominant microbiota during production of lait caillé, a spontaneously fermented milk product made in Burkina Faso. World Journal of Microbiology and Biotechnology, 2019, 35, 100.	1.7	17
23	Effects of intrinsic microbial stress factors on viability and physiological condition of yeasts isolated from spontaneously fermented cereal doughs. International Journal of Food Microbiology, 2019, 304, 75-88.	2.1	10
24	Potential of Pectins to Beneficially Modulate the Gut Microbiota Depends on Their Structural Properties. Frontiers in Microbiology, 2019, 10, 223.	1.5	171
25	In vitro modulation of human gut microbiota composition and metabolites by Bifidobacterium longum BB-46 and a citric pectin. Food Research International, 2019, 120, 595-602.	2.9	28
26	Improving food value chains for cereal doughs in West Africa: case study of mawè in Benin. Food Chain, 2019, 8, 18-38.	0.4	5
27	The effect of pectins on survival of probiotic Lactobacillus spp. in gastrointestinal juices is related to their structure and physical properties. Food Microbiology, 2018, 74, 11-20.	2.1	55
28	Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts. International Journal of Food Microbiology, 2018, 285, 173-187.	2.1	43
29	Prevalence and Characteristics of Listeria monocytogenes Isolates in Raw Milk, Heated Milk and Nunu, a Spontaneously Fermented Milk Beverage, in Ghana. Beverages, 2018, 4, 40.	1.3	29
30	Modulation of gut microbiota from obese individuals by in vitro fermentation of citrus pectin in combination with Bifidobacterium longum BB-46. Applied Microbiology and Biotechnology, 2018, 102, 8827-8840.	1.7	55
31	Occurrence of lactic acid bacteria and yeasts at species and strain level during spontaneous fermentation of mawè, a cereal dough produced in West Africa. Food Microbiology, 2018, 76, 267-278.	2.1	26
32	Impact of quorum sensing on the quality of fermented foods. Current Opinion in Food Science, 2017, 13, 16-25.	4.1	37
33	Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiology, 2017, 17, 65.	1.3	129
34	Interaction between sodium chloride and texture in semi-hard Danish cheese as affected by brining time, dl -starter culture, chymosin type and cheese ripening. International Dairy Journal, 2017, 70, 34-45.	1.5	16
35	Nunu, A West African Fermented Yogurt-Like Milk Product. , 2017, , 275-283.		5
36	Kluyveromyces marxianus and Saccharomyces boulardii Induce Distinct Levels of Dendritic Cell Cytokine Secretion and Significantly Different T Cell Responses In Vitro. PLoS ONE, 2016, 11, e0167410.	1.1	19

#	Article	IF	CITATIONS
37	Transcriptional responses in <i>Lactococcus lactis</i> subsp. <i>cremoris</i> to the changes in oxygen and redox potential during milk acidification. Letters in Applied Microbiology, 2016, 63, 117-123.	1.0	18
38	Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations. Applied Microbiology and Biotechnology, 2016, 100, 5965-5976.	1.7	27
39	In vitro investigation of Debaryomyces hansenii strains for potential probiotic properties. World Journal of Microbiology and Biotechnology, 2016, 32, 141.	1.7	34
40	Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential. International Journal of Food Microbiology, 2016, 226, 5-12.	2.1	16
41	Fluorescent labelling negatively affects the physiology of Lactococcus lactis. International Dairy Journal, 2015, 49, 130-138.	1.5	5
42	Technological properties and probiotic potential of Lactobacillus fermentum strains isolated from West African fermented millet dough. BMC Microbiology, 2015, 15, 261.	1.3	67
43	Expression of Virulence-Related Genes in Listeria monocytogenes Grown on Danish Hard Cheese as Affected by NaCl Content. Foodborne Pathogens and Disease, 2015, 12, 536-544.	0.8	11
44	Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium. Letters in Applied Microbiology, 2015, 61, 491-497.	1.0	24
45	Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture. Journal of Dairy Science, 2015, 98, 1640-1651.	1.4	21
46	Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains. International Journal of Food Microbiology, 2015, 205, 81-89.	2.1	37
47	Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis. Food Chemistry, 2015, 184, 167-175.	4.2	50
48	Microbial diversity and dynamics throughout manufacturing and ripening of surface ripened semi-hard Danish Danbo cheeses investigated by culture-independent techniques. International Journal of Food Microbiology, 2015, 215, 124-130.	2.1	29
49	Production of autoinducer-2 by aerobic endospore-forming bacteria isolated from the West African fermented foods. FEMS Microbiology Letters, 2015, 362, fnv186.	0.7	12
50	Impact of NaCl reduction in Danish semi-hard Samsoe cheeses on proliferation and autolysis of DL-starter cultures. International Journal of Food Microbiology, 2015, 213, 59-70.	2.1	15
51	Characteristics and phylogeny of Bacillus cereus strains isolated from Maari, a traditional West African food condiment. International Journal of Food Microbiology, 2015, 196, 70-78.	2.1	28
52	Hanseniaspora jakobsenii sp. nov., a yeast isolated from Bandji, a traditional palm wine of Borassus akeassii. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3576-3579.	0.8	28
53	Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study. PLoS ONE, 2014, 9, e96595.	1.1	25
54	The Use of Lactic Acid Bacteria Starter Culture in the Production of <i>Nunu</i> , a Spontaneously Fermented Milk Product in Ghana. International Journal of Food Science, 2014, 2014, 1-11.	0.9	48

#	Article	IF	CITATIONS
55	Assessment of interplay between UV wavelengths, material surfaces and food residues in open surface hygiene validation. Journal of Food Science and Technology, 2014, 51, 3977-3983.	1.4	3
56	Characterization of Bacillus spp. strains for use as probiotic additives in pig feed. Applied Microbiology and Biotechnology, 2014, 98, 1105-1118.	1.7	105
57	170. Cytokine, 2014, 70, 69.	1.4	0
58	Effect of the gastrointestinal environment on pH homeostasis of Lactobacillus plantarum and Lactobacillus brevis cells as measured by real-time fluorescence ratio-imaging microscopy. Research in Microbiology, 2014, 165, 215-225.	1.0	5
59	Synbiotic <i>Lactobacillus acidophilus</i> NCFM and cellobiose does not affect human gut bacterial diversity but increases abundance of lactobacilli, bifidobacteria and branched-chain fatty acids: a randomized, double-blinded cross-over trial. FEMS Microbiology Ecology, 2014, 90, 225-236.	1.3	40
60	Identification of Bacillus species occurring in Kantong, an acid fermented seed condiment produced in Ghana. International Journal of Food Microbiology, 2014, 180, 1-6.	2.1	9
61	Inhibition of ochratoxigenic moulds by Debaryomyces hansenii strains for biopreservation of dry-cured meat products. International Journal of Food Microbiology, 2014, 170, 70-77.	2.1	82
62	Reducing the atypical odour of dawadawa: Effect of modification of fermentation conditions and post-fermentation treatment on the development of the atypical odour of dawadawa. Food Control, 2014, 42, 335-342.	2.8	9
63	Isolation and Identification of the Microbiota of Danish Farmhouse and Industrially Produced Surface-Ripened Cheeses. Microbial Ecology, 2013, 65, 602-615.	1.4	68
64	Lactobacillus delbrueckii subsp. jakobsenii subsp. nov., isolated from dolo wort, an alcoholic fermented beverage in Burkina Faso. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3720-3726.	0.8	28
65	Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiology, 2013, 36, 22-29.	2.1	267
66	Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product. Food Microbiology, 2013, 34, 277-283.	2.1	109
67	Yeast dynamics during spontaneous fermentation of mawÃ [~] and tchoukoutou, two traditional products from Benin. International Journal of Food Microbiology, 2013, 165, 200-207.	2.1	43
68	Determination of yeast diversity in ogi, mawè, gowé and tchoukoutou by using culture-dependent and -independent methods. International Journal of Food Microbiology, 2013, 165, 84-88.	2.1	58
69	The Microbiology of Cocoa Fermentation. , 2013, , 39-60.		10
70	Draft Whole-Genome Sequence of Bacillus sonorensis Strain L12, a Source of Nonribosomal Lipopeptides. Genome Announcements, 2013, 1, e0009713.	0.8	7
71	Comparative fermentation of insoluble carbohydrates in an in vitro human feces model spiked with <i>Lactobacillus acidophilus</i> NCFM. Starch/Staerke, 2013, 65, 346-353.	1.1	6
72	Antimicrobial Susceptibility of Bacillus Strains Isolated from Primary Starters for African Traditional Bread Production and Characterization of the Bacitracin Operon and Bacitracin Biosynthesis. Applied and Environmental Microbiology, 2012, 78, 7903-7914.	1.4	89

LENE JESPERSEN

#	Article	IF	CITATIONS
73	Identification of lactic acid bacteria isolated during traditional fura processing in Ghana. Food Microbiology, 2012, 32, 72-78.	2.1	45
74	Transcriptomics in human blood incubation reveals the importance of oxidative stress response in Saccharomyces cerevisiae clinical strains. BMC Genomics, 2012, 13, 419.	1.2	15
75	Genotypic characterization and safety assessment of lactic acid bacteria from indigenous African fermented food products. BMC Microbiology, 2012, 12, 75.	1.3	69
76	Biodiversity and probiotic potential of yeasts isolated from Fura, a West African spontaneously fermented cereal. International Journal of Food Microbiology, 2012, 159, 144-151.	2.1	71
77	Partial Characterization of Bacteriocins Produced by Lactobacillus reuteri 2-20B and Pediococcus acidilactici 0-11A Isolated from Fura, a Millet-Based Fermented Food in Ghana. Journal of Food Research, 2012, 2, 50.	0.1	7
78	<i>Debaryomyces hansenii</i> strains differ in their production of flavor compounds in a cheeseâ€surface model. MicrobiologyOpen, 2012, 1, 161-168.	1.2	38
79	Attachment behaviour of Escherichia coli K12 and Salmonella Typhimurium P6 on food contact surfaces for food transportation. Food Microbiology, 2012, 31, 139-147.	2.1	23
80	Differentiation of the virulence potential of Campylobacter jejuni strains by use of gene transcription analysis and a Caco-2 assay. International Journal of Food Microbiology, 2012, 155, 60-68.	2.1	19
81	Clinical Saccharomyces cerevisiae isolates cannot cross the epithelial barrier in vitro. International Journal of Food Microbiology, 2012, 157, 59-64.	2.1	21
82	The Effect of Selected Synbiotics on Microbial Composition and Short-Chain Fatty Acid Production in a Model System of the Human Colon. PLoS ONE, 2012, 7, e47212.	1.1	90
83	Autoinducer-2 activity produced by bacteria found in smear of surface ripened cheeses. International Dairy Journal, 2011, 21, 48-53.	1.5	15
84	Flavour compound production by Yarrowia lipolytica, Saccharomyces cerevisiae and Debaryomyces hansenii in a cheese-surface model. International Dairy Journal, 2011, 21, 970-978.	1.5	57
85	Understanding the behavior of foodborne pathogens in the food chain: New information for risk assessment analysis. Trends in Food Science and Technology, 2011, 22, S21-S29.	7.8	28
86	Phytase-active yeasts from grain-based food and beer. Journal of Applied Microbiology, 2011, 110, 1370-1380.	1.4	34
87	Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii. FEMS Yeast Research, 2011, 11, 643-652.	1.1	68
88	The quorum sensing luxS gene is induced in Lactobacillus acidophilus NCFM in response to Listeria monocytogenes. International Journal of Food Microbiology, 2011, 149, 269-273.	2.1	36
89	Occurrence and Identification of Yeast Species in Fermented Liquid Feed for Piglets. Microbial Ecology, 2011, 61, 146-153.	1.4	16
90	Production of Bread, Cheese and Meat. , 2011, , 3-27.		4

#	Article	IF	CITATIONS
91	Application of Molecular Biology and Genomics of Probiotics for Enteric Cytoprotection. , 2011, , 133-153.		0
92	Beneficial Effects of Probiotic and Food Borne Yeasts on Human Health. Nutrients, 2010, 2, 449-473.	1.7	179
93	Relative transcription of Listeria monocytogenes virulence genes in liver pâtés with varying NaCl content. International Journal of Food Microbiology, 2010, 141, S60-S68.	2.1	50
94	Relative gene transcription and pathogenicity of enterohemorrhagic Escherichia coli after long-term adaptation to acid and salt stress. International Journal of Food Microbiology, 2010, 141, 248-253.	2.1	27
95	<i>Lactobacillus acidophilus</i> induces virus immune defence genes in murine dendritic cells by a Tollâ€like receptorâ€2â€dependent mechanism. Immunology, 2010, 131, 268-281.	2.0	138
96	Candida halmiae sp. nov., Geotrichum ghanense sp. nov. and Candida awuaii sp. nov., isolated from Ghanaian cocoa fermentations. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1460-1465.	0.8	19
97	Transcriptional Analysis of Genes Associated with Stress and Adhesion in <i>Lactobacillus acidophilus</i> NCFM during the Passage through an in vitro Gastrointestinal Tract Model. Journal of Molecular Microbiology and Biotechnology, 2010, 18, 206-214.	1.0	34
98	Survival of <i>Listeria monocytogenes</i> in Simulated Gastrointestinal System and Transcriptional Profiling of Stress- and Adhesion-Related Genes. Foodborne Pathogens and Disease, 2010, 7, 267-274.	0.8	21
99	A comparative study of the anti-listerial activity of smear bacteria. International Dairy Journal, 2010, 20, 555-559.	1.5	4
100	Microbiological and biochemical characterization of fermented liquid feed samples from 40 Danish farms. Livestock Science, 2010, 134, 158-161.	0.6	6
101	Gene Transcription and Virulence Potential of <i>Listeria monocytogenes</i> Strains After Exposure to Acidic and NaCl Stress. Foodborne Pathogens and Disease, 2009, 6, 669-680.	0.8	82
102	Al-2 signalling is induced by acidic shock in probiotic strains of Lactobacillus spp International Journal of Food Microbiology, 2009, 135, 295-302.	2.1	67
103	Comparison of Saccharomyces cerevisiae strains of clinical and nonclinical origin by molecular typing and determination of putative virulence traits. FEMS Yeast Research, 2008, 8, 631-640.	1.1	57
104	Variations of internal pH in typical Italian sourdough yeasts during co-fermentation with lactobacilli. LWT - Food Science and Technology, 2008, 41, 1610-1615.	2.5	10
105	Occurrence and growth of yeasts in processed meat products – Implications for potential spoilage. Meat Science, 2008, 80, 919-926.	2.7	59
106	Ammonia Production and Its Possible Role as a Mediator of Communication for Debaryomyces hansenii and Other Cheese-Relevant Yeast Species. Journal of Dairy Science, 2007, 90, 5032-5041.	1.4	57
107	Lactic acid bacteria and yeasts associated withgowéproduction from sorghum in Bénin. Journal of Applied Microbiology, 2007, 103, 342-349.	1.4	84
108	Identification of amino acids involved in the Flo11p-mediated adhesion ofSaccharomyces cerevisiaeto a polystyrene surface using phage display with competitive elution. Journal of Applied Microbiology, 2007, 103, 1041-1047.	1.4	20

#	Article	IF	CITATIONS
109	Relationship between growth and pH gradients of individual cells of Debaryomyces hansenii as influenced by NaCl and solid substrate. Letters in Applied Microbiology, 2007, 44, 279-285.	1.0	8
110	Proteomic changes inDebaryomyces hanseniiupon exposure to NaCl stress. FEMS Yeast Research, 2007, 7, 293-303.	1.1	24
111	Yeast diversity in rice–cassava fermentations produced by the indigenous Tapirapé people of Brazil. FEMS Yeast Research, 2007, 7, 966-972.	1.1	35
112	Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. International Journal of Food Microbiology, 2007, 113, 41-46.	2.1	175
113	The Flo11p-deficient Saccharomyces cerevisiae strain background S288c can adhere to plastic surfaces. Colloids and Surfaces B: Biointerfaces, 2007, 60, 131-134.	2.5	7
114	Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science and Technology, 2006, 17, 48-55.	7.8	324
115	Antimicrobial activity of Bacillus subtilis and Bacillus pumilus during the fermentation of African locust bean (Parkia biglobosa) for Soumbala production. Journal of Applied Microbiology, 2006, 102, 061120055200065-???.	1.4	57
116	Intracellular pH homeostasis plays a role in the NaCl tolerance of Debaryomyces hansenii strains. Applied Microbiology and Biotechnology, 2006, 71, 713-719.	1.7	22
117	Pectin degrading enzymes in yeasts involved in fermentation of Coffea arabica in East Africa. International Journal of Food Microbiology, 2006, 110, 291-296.	2.1	99
118	Taxonomic and Ecological Diversity of Food and Beverage Yeasts. , 2006, , 13-53.		51
119	Debaryomyces hanseniistrains with different cell sizes and surface physicochemical properties adhere differently to a solid agarose surface. FEMS Microbiology Letters, 2005, 249, 165-170.	0.7	29
120	Occurrence and diversity of yeasts involved in fermentation of West African cocoa beans. FEMS Yeast Research, 2005, 5, 441-453.	1.1	184
121	Identification of genes and proteins induced during the lag and early exponential phase of lager brewing yeasts. Journal of Applied Microbiology, 2005, 98, 261-271.	1.4	43
122	In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 2005, 101, 29-39.	2.1	158
123	Biodiversity of Saccharomyces cerevisiae isolated from a survey of pito production sites in various parts of Ghana. Systematic and Applied Microbiology, 2005, 28, 755-761.	1.2	34
124	Oxygen- and light-barrier properties of thermoformed packaging materials used for modified atmosphere packaging. evaluation of performance under realistic storage conditions. Packaging Technology and Science, 2005, 18, 265-272.	1.3	16
125	Yeast populations associated with Chanaian cocoa fermentations analysed using denaturing gradient gel electrophoresis (DGGE). Yeast, 2005, 22, 271-284.	0.8	107
126	Expression of theGPD1 andGPP2 orthologues and glycerol retention during growth ofDebaryomyces hansenii at high NaCl concentrations. Yeast, 2005, 22, 1213-1222.	0.8	28

#	Article	IF	CITATIONS
127	Detection of resistance of lactic acid bacteria to a mixture of the hop analogue compounds tetrahydroiso-alpha-acids by noninvasive measurement of intracellular pH. Journal of Applied Microbiology, 2004, 96, 1324-1332.	1.4	14
128	Genetic diversity of the species Debaryomyces hansenii and the use of chromosome polymorphism for typing of strains isolated from surface-ripened cheeses. Journal of Applied Microbiology, 2004, 97, 205-213.	1.4	51
129	A flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk. Journal of Applied Microbiology, 2004, 97, 935-941.	1.4	43
130	Lactic acid tolerance determined by measurement of intracellular pH of single cells of Candida krusei and Saccharomyces cerevisiae isolated from fermented maize dough. International Journal of Food Microbiology, 2004, 94, 97-103.	2.1	66
131	Yeast involved in fermentation ofCoffea arabica in East Africa determined by genotyping and by direct denaturating gradient gel electrophoresis. Yeast, 2004, 21, 549-556.	0.8	160
132	Starter Cultures and Fermented Products. , 2004, , .		4
133	Genome-wide transcriptional changes during the lag phase of Saccharomyces cerevisiae. Archives of Microbiology, 2003, 179, 278-294.	1.0	33
134	The Taxonomic Position of Saccharomyces boulardii as Evaluated by Sequence Analysis of the D1/D2 Domain of 26S rDNA, the ITS1-5.8S rDNA-ITS2 Region and the Mitochondrial Cytochrome-c Oxidase II Gene. Systematic and Applied Microbiology, 2003, 26, 564-571.	1.2	71
135	Occurrence and taxonomic characteristics of strains of predominant in African indigenous fermented foods and beverages. FEMS Yeast Research, 2003, 3, 191-200.	1.1	162
136	Molecular genetic identification of sensu stricto strains from African sorghum beer. FEMS Yeast Research, 2003, 3, 177-184.	1.1	51
137	A Flow-Cytometric Gram-Staining Technique for Milk-Associated Bacteria. Applied and Environmental Microbiology, 2003, 69, 2857-2863.	1.4	72
138	Protein expression during lag phase and growth initiation in Saccharomyces cerevisiae. International Journal of Food Microbiology, 2002, 75, 27-38.	2.1	42
139	DNA typing methods for differentiation of Debaryomyces hansenii strains and other yeasts related to surface ripened cheeses. International Journal of Food Microbiology, 2001, 69, 11-24.	2.1	47
140	Phenotypic and genetic diversity of Saccharomyces contaminants isolated from lager breweries and their phylogenetic relationship with brewing yeasts. International Journal of Food Microbiology, 2000, 60, 43-53.	2.1	43
141	Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid. Archives of Microbiology, 2000, 174, 125-128.	1.0	74
142	Characterization ofSaccharomyces cerevisiaestrains from spontaneously fermented maize dough by profiles of assimilation, chromosome polymorphism, PCR andMALgenotyping. Journal of Applied Microbiology, 1999, 86, 284-294.	1.4	48
143	Multiple α-Glucoside Transporter Genes in Brewer's Yeast. Applied and Environmental Microbiology, 1999, 65, 450-456.	1.4	65
144	Detection and identification of wild yeasts in lager breweries. International Journal of Food Microbiology, 1998, 43, 205-213.	2.1	51

#	Article	IF	CITATIONS
145	RELATIONSHIP BETWEEN YEAST CELL PROLIFERATION AND INTRACELLULAR ESTERASE ACTIVITY DURING BREWING FERMENTATIONS. Journal of the Institute of Brewing, 1998, 104, 333-338.	0.8	6
146	Specific spoilage organisms in breweries and laboratory media for their detection. International Journal of Food Microbiology, 1996, 33, 139-155.	2.1	151
147	Significance of yeasts and moulds occurring in maize dough fermentation for â€~kenkey' production. International Journal of Food Microbiology, 1994, 24, 239-248.	2.1	104
148	USE OF FLOW CYTOMETRY FOR RAPID ESTIMATION OF INTRACELLULAR EVENTS IN BREWING YEASTS. Journal of the Institute of Brewing, 1994, 100, 399-403.	0.8	13
149	Flow cytometric detection of wild yeast in lager breweries. International Journal of Food Microbiology, 1993, 17, 321-328.	2.1	31