Matt Nicholl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3619135/publications.pdf

Version: 2024-02-01

		36271	34964
128	9,864 citations	51	98
papers	citations	h-index	g-index
100	100	100	5040
132	132	132	5840
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A detailed spectroscopic study of tidal disruption events. Astronomy and Astrophysics, 2022, 659, A34.	2.1	21
2	Constraints on compact binary merger evolution from spin-orbit misalignment in gravitational-wave observations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1454-1461.	1.6	18
3	Evidence for X-Ray Emission in Excess to the Jet-afterglow Decay 3.5 yr after the Binary Neutron Star Merger GW 170817: A New Emission Component. Astrophysical Journal Letters, 2022, 927, L17.	3.0	41
4	Close, bright, and boxy: the superluminous SN 2018hti. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4484-4502.	1.6	5
5	Less Than 1% of Core-collapse Supernovae in the Local Universe Occur in Elliptical Galaxies. Astrophysical Journal, 2022, 927, 10.	1.6	10
6	Legacy Survey of Space and Time cadence strategy evaluations for active galactic nucleus time-series data in Wide-Fast-Deep field. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5580-5600.	1.6	10
7	Limits on the Hard X-Ray Emission From the Periodic Fast Radio Burst FRB 180916.J0158+65. Astrophysical Journal, 2022, 929, 173.	1.6	3
8	Target-of-opportunity Observations of Gravitational-wave Events with Vera C. Rubin Observatory. Astrophysical Journal, Supplement Series, 2022, 260, 18.	3.0	21
9	Progenitor, environment, and modelling of the interacting transient ATÂ2016jbu (Gaia16cfr). Monthly Notices of the Royal Astronomical Society, 2022, 513, 5666-5685.	1.6	10
10	Photometric and spectroscopic evolution of the interacting transient ATÂ2016jbu(Gaia16cfr). Monthly Notices of the Royal Astronomical Society, 2022, 513, 5642-5665.	1.6	10
11	Simultaneous View of FRB 180301 with FAST and NICER during a Bursting Phase. Astrophysical Journal, 2022, 930, 172.	1.6	5
12	Optical Observations and Modeling of the Superluminous Supernova 2018lfe. Astrophysical Journal, 2022, 931, 32.	1.6	1
13	A Radio, Optical, UV, and X-Ray View of the Enigmatic Changing-look Active Galactic Nucleus 1ES 1927+654 from Its Pre- to Postflare States. Astrophysical Journal, 2022, 931, 5.	1.6	17
14	The bulge masses of TDE host galaxies and their scaling with black hole mass. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1146-1157.	1.6	12
15	Bumpy Declining Light Curves Are Common in Hydrogen-poor Superluminous Supernovae. Astrophysical Journal, 2022, 933, 14.	1.6	23
16	SNÂ2017gci: a nearby Type I Superluminous Supernova with a bumpy tail. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2120-2139.	1.6	16
17	Extremely Energetic Supernova Explosions Embedded in a Massive Circumstellar Medium: The Case of SN 2016aps. Astrophysical Journal, 2021, 908, 99.	1.6	8
18	Accretion disc cooling and narrow absorption lines in the tidal disruption event AT 2019dsg. Monthly Notices of the Royal Astronomical Society, 2021, 504, 792-815.	1.6	30

#	Article	IF	CITATIONS
19	Late-time Radio and Millimeter Observations of Superluminous Supernovae and Long Gamma-Ray Bursts: Implications for Central Engines, Fast Radio Bursts, and Obscured Star Formation. Astrophysical Journal, 2021, 912, 21.	1.6	18
20	Tight multimessenger constraints on the neutron star equation of state from GW170817 and a forward model for kilonova light-curve synthesis. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3016-3032.	1.6	49
21	GRB 180418A: A Possibly Short Gamma-Ray Burst with a Wide-angle Outflow in a Faint Host Galaxy. Astrophysical Journal, 2021, 912, 95.	1.6	8
22	Core-collapse supernova subtypes in luminous infrared galaxies. Astronomy and Astrophysics, 2021, 649, A134.	2.1	4
23	SN 2020cpg: an energetic link between Type IIb and Ib supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1832-1849.	1.6	3
24	The Luminous and Double-peaked Type Ic Supernova 2019stc: Evidence for Multiple Energy Sources. Astrophysical Journal, 2021, 913, 143.	1.6	19
25	SNÂ2019hcc: a Type II supernova displaying early O ii lines. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4819-4840.	1.6	3
26	Superluminous supernovae: an explosive decade. Astronomy and Geophysics, 2021, 62, 5.34-5.42.	0.1	22
27	Real-time discovery of AT2020xnd: a fast, luminous ultraviolet transient with minimal radioactive ejecta. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5138-5147.	1.6	44
28	The Broadband Counterpart of the Short GRB 200522A at $z\hat{A}=\hat{A}0.5536$: A Luminous Kilonova or a Collimated Outflow with a Reverse Shock?. Astrophysical Journal, 2021, 906, 127.	1.6	48
29	Late-time Hubble Space Telescope Observations of a Hydrogen-poor Superluminous Supernova Reveal the Power-law Decline of a Magnetar Central Engine. Astrophysical Journal, 2021, 921, 64.	1.6	6
30	A Late-time Galaxy-targeted Search for the Radio Counterpart of GW190814. Astrophysical Journal, 2021, 923, 66.	1.6	16
31	SN 2018agk: A Prototypical Type Ia Supernova with a Smooth Power-law Rise in Kepler (K2). Astrophysical Journal, 2021, 923, 167.	1.6	10
32	A year-long plateau in the late-time near-infrared light curves of type Ia supernovae. Nature Astronomy, 2020, 4, 188-195.	4.2	15
33	Be X-ray binaries in the SMC as indicators of mass-transfer efficiency. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4705-4720.	1.6	40
34	An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. Monthly Notices of the Royal Astronomical Society, 2020, 499, 482-504.	1.6	58
35	The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1925-1934.	1.6	25
36	The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio. Monthly Notices of the Royal Astronomical Society, 2020, 497, 361-377.	1.6	10

#	Article	IF	Citations
37	The tidal disruption event AT 2018hyz – I. Double-peaked emission lines and a flat Balmer decrement. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4119-4133.	1.6	35
38	SNÂ2017ivv: two years of evolution of a transitional Type II supernova. Monthly Notices of the Royal Astronomical Society, 2020, 499, 974-992.	1.6	7
39	DES16C3cje: A low-luminosity, long-lived supernova. Monthly Notices of the Royal Astronomical Society, 2020, 496, 95-110.	1.6	8
40	SN 2016gsd: an unusually luminous and linear Type II supernova with high velocities. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1761-1781.	1.6	9
41	An extremely energetic supernova from a very massive star in a dense medium. Nature Astronomy, 2020, 4, 893-899.	4.2	31
42	The rise and fall of an extraordinary Ca-rich transient. Astronomy and Astrophysics, 2020, 635, A186.	2.1	15
43	Observational constraints on the optical and near-infrared emission from the neutron star–black hole binary merger candidate S190814bv. Astronomy and Astrophysics, 2020, 643, A113.	2.1	70
44	PS15cey and PS17cke: prospective candidates from the Pan-STARRS Search for kilonovae. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4213-4228.	1.6	13
45	SN 2019muj – a well-observed Type lax supernova that bridges the luminosity gap of the class. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1078-1099.	1.6	14
46	The Pre-explosion Mass Distribution of Hydrogen-poor Superluminous Supernova Progenitors and New Evidence for a Mass–Spin Correlation. Astrophysical Journal, 2020, 897, 114.	1.6	30
47	SN 2019ehk: A Double-peaked Ca-rich Transient with Luminous X-Ray Emission and Shock-ionized Spectral Features. Astrophysical Journal, 2020, 898, 166.	1.6	48
48	FLEET: A Redshift-agnostic Machine Learning Pipeline to Rapidly Identify Hydrogen-poor Superluminous Supernovae. Astrophysical Journal, 2020, 904, 74.	1.6	15
49	The Distant, Galaxy Cluster Environment of the Short GRB 161104A at z $\hat{a}^{-1/4}$ 0.8 and a Comparison to the Short GRB Host Population. Astrophysical Journal, 2020, 904, 52.	1.6	17
50	Discovery of the Optical Afterglow and Host Galaxy of Short GRB 181123B at $z\hat{A}=\hat{A}1.754$: Implications for Delay Time Distributions. Astrophysical Journal Letters, 2020, 898, L32.	3.0	24
51	SN 2016iet: The Pulsational or Pair Instability Explosion of a Low-metallicity Massive CO Core Embedded in a Dense Hydrogen-poor Circumstellar Medium. Astrophysical Journal, 2019, 881, 87.	1.6	28
52	A Radio Source Coincident with the Superluminous Supernova PTF10hgi: Evidence for a Central Engine and an Analog of the Repeating FRB 121102?. Astrophysical Journal Letters, 2019, 876, L10.	3.0	40
53	The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1878-1893.	1.6	49
54	Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4816-4830.	1.6	100

#	Article	IF	CITATIONS
55	The Optical Afterglow of GW170817: An Off-axis Structured Jet and Deep Constraints on a Globular Cluster Origin. Astrophysical Journal Letters, 2019, 883, L1.	3.0	69
56	GRB 171010A/SN 2017htp: a GRB-SN at zÂ=Â0.33. Monthly Notices of the Royal Astronomical Society, 2490, 5366-5374.	2019, 1.6	14
57	SN2018kzr: A Rapidly Declining Transient from the Destruction of a White Dwarf. Astrophysical Journal Letters, 2019, 885, L23.	3.0	28
58	Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR. Astrophysical Journal Letters, 2019, 880, L4.	3.0	63
59	Nebular-phase Spectra of Superluminous Supernovae: Physical Insights from Observational and Statistical Properties. Astrophysical Journal, 2019, 871, 102.	1.6	51
60	A Hydrogen-poor Superluminous Supernova with Enhanced Iron-group Absorption: A New Link between SLSNe and Broad-lined Type Ic SNe. Astrophysical Journal, 2019, 872, 90.	1.6	23
61	Bright Type IIP Supernovae in Low-metallicity Galaxies. Astrophysical Journal Letters, 2019, 870, L16.	3.0	3
62	An Embedded X-Ray Source Shines through the Aspherical ATÂ2018cow: Revealing the Inner Workings of the Most Luminous Fast-evolving Optical Transients. Astrophysical Journal, 2019, 872, 18.	1.6	160
63	A Search for Optical Emission from Binary Black Hole Merger GW170814 with the Dark Energy Camera. Astrophysical Journal Letters, 2019, 873, L24.	3.0	14
64	Two Years of Nonthermal Emission from the Binary Neutron Star Merger GW170817: Rapid Fading of the Jet Afterglow and First Constraints on the Kilonova Fastest Ejecta. Astrophysical Journal Letters, 2019, 886, L17.	3.0	117
65	Observation of inverse Compton emission from a long \hat{I}^3 -ray burst. Nature, 2019, 575, 459-463.	13.7	146
66	A Galaxy-targeted Search for the Optical Counterpart of the Candidate NS–BH Merger S190814bv with Magellan. Astrophysical Journal Letters, 2019, 884, L55.	3.0	50
67	The Spectral Evolution of AT 2018dyb and the Presence of Metal Lines in Tidal Disruption Events. Astrophysical Journal, 2019, 887, 218.	1.6	72
68	Lasair: The Transient Alert Broker for LSST:UK. Research Notes of the AAS, 2019, 3, 26.	0.3	70
69	The GRB–SLSN connection: misaligned magnetars, weak jet emergence, and observational signatures. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2659-2674.	1.6	55
70	The Binary Neutron Star Event LIGO/Virgo GW170817 160 Days after Merger: Synchrotron Emission across the Electromagnetic Spectrum. Astrophysical Journal Letters, 2018, 856, L18.	3.0	258
71	How Many Kilonovae Can Be Found in Past, Present, and Future Survey Data Sets?. Astrophysical Journal Letters, 2018, 852, L3.	3.0	60
72	A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations < sup>â^— < /sup>. Astrophysical Journal Letters, 2018, 854, L31.	3.0	99

#	Article	IF	Citations
73	The Type I Superluminous Supernova PS16aqv: Lightcurve Complexity and Deep Limits on Radioactive Ejecta in a Fast Event. Astrophysical Journal, 2018, 865, 9.	1.6	25
74	Superluminous Supernovae in LSST: Rates, Detection Metrics, and Light-curve Modeling. Astrophysical Journal, 2018, 869, 166.	1.6	41
75	Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2407-2426.	1.6	68
76	MOSFiT: Modular Open Source Fitter for Transients. Astrophysical Journal, Supplement Series, 2018, 236, 6.	3.0	136
77	Results from a Systematic Survey of X-Ray Emission from Hydrogen-poor Superluminous SNe. Astrophysical Journal, 2018, 864, 45.	1.6	47
78	Systematic Investigation of the Fallback Accretion-powered Model for Hydrogen-poor Superluminous Supernovae. Astrophysical Journal, 2018, 867, 113.	1.6	30
79	A Decline in the X-Ray through Radio Emission from GW170817 Continues to Support an Off-axis Structured Jet. Astrophysical Journal Letters, 2018, 863, L18.	3.0	138
80	Where is the Engine Hiding Its Missing Energy? Constraints from a Deep X-Ray Non-detection of the Superluminous SN 2015bn*. Astrophysical Journal Letters, 2018, 868, L32.	3.0	13
81	One Thousand Days of SN2015bn: HST Imaging Shows a Light Curve Flattening Consistent with Magnetar Predictions. Astrophysical Journal Letters, 2018, 866, L24.	3.0	34
82	Jets in Hydrogen-poor Superluminous Supernovae: Constraints from a Comprehensive Analysis of Radio Observations. Astrophysical Journal, 2018, 856, 56.	1.6	30
83	Spitzer Space Telescope Infrared Observations of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2018, 862, L11.	3.0	30
84	On the nature of hydrogen-rich superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1046-1072.	1.6	65
85	SuperBol: A User-friendly Python Routine for Bolometric Light Curves. Research Notes of the AAS, 2018, 2, 230.	0.3	52
86	Serendipitous Discovery of a 14 year old Supernova at 16 Mpc. Research Notes of the AAS, 2018, 2, 165.	0.3	0
87	X-Rays from the Location of the Double-humped Transient ASASSN-15lh. Astrophysical Journal, 2017, 836, 25.	1.6	51
88	The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. Astronomy and Astrophysics, 2017, 602, A9.	2.1	56
89	The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nature Astronomy, 2017, 1 , .	4.2	154
90	Hydrogen-rich supernovae beyond the neutrino-driven core-collapse paradigm. Nature Astronomy, 2017, 1, 713-720.	4.2	48

#	Article	IF	CITATIONS
91	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	13.7	674
92	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. Astrophysical Journal Letters, 2017, 848, L17.	3.0	656
93	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta. Astrophysical Journal Letters, 2017, 848, L18.	3.0	327
94	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South. Astrophysical Journal Letters, 2017, 848, L19.	3.0	390
95	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet. Astrophysical Journal Letters, 2017, 848, L20.	3.0	313
96	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts. Astrophysical Journal Letters, 2017, 848, L23.	3.0	103
97	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale. Astrophysical Journal Letters, 2017, 848, L22.	3.0	107
98	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. Astrophysical Journal Letters, 2017, 848, L16.	3.0	392
99	The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta. Astrophysical Journal Letters, 2017, 848, L21.	3.0	266
100	The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT. Astrophysical Journal, 2017, 850, 55.	1.6	173
101	PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy. Astrophysical Journal, 2017, 843, 106.	1.6	125
102	Empirical Constraints on the Origin of Fast Radio Bursts: Volumetric Rates and Host Galaxy Demographics as a Test of Millisecond Magnetar Connection. Astrophysical Journal, 2017, 843, 84.	1.6	95
103	LONG-DURATION SUPERLUMINOUS SUPERNOVAE AT LATE TIMES. Astrophysical Journal, 2017, 835, 13.	1.6	92
104	An Ultraviolet Excess in the Superluminous Supernova Gaia16apd Reveals a Powerful Central Engine. Astrophysical Journal Letters, 2017, 835, L8.	3.0	63
105	The Superluminous Supernova SN 2017egm in the Nearby Galaxy NGC 3191: A Metal-rich Environment Can Support a Typical SLSN Evolution. Astrophysical Journal Letters, 2017, 845, L8.	3.0	51
106	The Combined Ultraviolet, Optical, and Near-infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications. Astrophysical Journal Letters, 2017, 851, L21.	3.0	369
107	Improved Constraints on H ₀ from a Combined Analysis of Gravitational-wave and Electromagnetic Emission from GW170817. Astrophysical Journal Letters, 2017, 851, L36.	3.0	85
108	Superluminous supernova progenitors have a half-solar metallicity threshold. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3566-3573.	1.6	69

#	Article	IF	Citations
109	Complexity in the light curves and spectra of slow-evolving superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4642-4662.	1.6	74
110	LSQ13fn: A type II-Plateau supernova with a possibly low metallicity progenitor that breaks the standardised candle relation. Astronomy and Astrophysics, 2016, 588, A1.	2.1	17
111	SN 2012aa: A transient between Type Ibc core-collapse and superluminous supernovae. Astronomy and Astrophysics, 2016, 596, A67.	2.1	20
112	Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4094-4116.	1.6	48
113	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44
114	Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L79-L83.	1.2	60
115	SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2016, 826, 39.	1.6	133
116	SUPERLUMINOUS SUPERNOVA SN 2015bn IN THE NEBULAR PHASE: EVIDENCE FOR THE ENGINE-POWERED EXPLOSION OF A STRIPPED MASSIVE STAR. Astrophysical Journal Letters, 2016, 828, L18.	3.0	88
117	Explosion of a massive, He-rich star at z = 0.16. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3151-3160.	1.6	2
118	LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE. Astrophysical Journal Letters, 2015, 807, L18.	3.0	98
119	PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astronomy and Astrophysics, 2015, 579, A40.	2.1	239
120	On the diversity of superluminous supernovae: ejected mass as the dominant factor. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3869-3893.	1.6	154
121	The host galaxy and late-time evolution of the superluminous supernova PTF12dam. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1567-1586.	1.6	94
122	OGLE-2013-SN-079: A LONELY SUPERNOVA CONSISTENT WITH A HELIUM SHELL DETONATION. Astrophysical Journal Letters, 2015, 799, L2.	3.0	25
123	The superluminous supernova PS1-11ap: bridging the gap between low and high redshift. Monthly Notices of the Royal Astronomical Society, 2014, 437, 656-674.	1.6	64
124	Superluminous supernovae from PESSTO. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2096-2113.	1.6	135
125	The supernova CSS121015:004244+132827: a clue for understanding superluminous supernovae. Monthly Notices of the Royal Astronomical Society, 2014, 441, 289-303.	1.6	70
126	SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL. Astrophysical Journal, 2013, 770, 128.	1.6	332

#	Article	IF	CITATIONS
127	Slowly fading super-luminous supernovae that are not pair-instability explosions. Nature, 2013, 502, 346-349.	13.7	226
128	Towards an understanding of long gamma-ray burst environments through circumstellar medium population synthesis predictions. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	3