Brendan P Cormack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3618942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology (United Kingdom), 1997, 143, 303-311.	0.7	559
2	A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature, 2008, 452, 604-609.	13.7	294
3	Nicotinic Acid Limitation Regulates Silencing of Candida Adhesins During UTI. Science, 2005, 308, 866-870.	6.0	255
4	A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7628-7633.	3.3	249
5	Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes and Development, 2003, 17, 2245-2258.	2.7	247
6	A yeast by any other name: Candida glabrata and its interaction with the host. Current Opinion in Microbiology, 2005, 8, 378-384.	2.3	237
7	Efficient Homologous and Illegitimate Recombination in the Opportunistic Yeast Pathogen Candida glabrata. Genetics, 1999, 151, 979-987.	1.2	167
8	Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Molecular Microbiology, 2004, 55, 1246-1258.	1.2	165
9	Systematic Phenotyping of a Large-Scale Candida glabrata Deletion Collection Reveals Novel Antifungal Tolerance Genes. PLoS Pathogens, 2014, 10, e1004211.	2.1	155
10	Functional Genomic Analysis of Fluconazole Susceptibility in the Pathogenic Yeast Candida glabrata : Roles of Calcium Signaling and Mitochondria. Antimicrobial Agents and Chemotherapy, 2004, 48, 1600-1613.	1.4	149
11	Modular domain structure in theCandida glabrataadhesin Epa1p, a β1,6 glucan-cross-linked cell wall protein. Molecular Microbiology, 2002, 46, 479-492.	1.2	134
12	Glycan microarray analysis of <i>Candida glabrata</i> adhesin ligand specificity. Molecular Microbiology, 2008, 68, 547-559.	1.2	128
13	Insertion site preference of Mu, Tn5, and Tn7 transposons. Mobile DNA, 2012, 3, 3.	1.3	123
14	Candida glabrata Binding to Candida albicans Hyphae Enables Its Development in Oropharyngeal Candidiasis. PLoS Pathogens, 2016, 12, e1005522.	2.1	117
15	Adaptive immunity induces mutualism between commensal eukaryotes. Nature, 2021, 596, 114-118.	13.7	110
16	<i>Candida albicans</i> adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5336-42.	3.3	102
17	<i>Candida albicans</i> SOD5 represents the prototype of an unprecedented class of Cu-only superoxide dismutases required for pathogen defense. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5866-5871.	3.3	99
18	Role of Calprotectin in Withholding Zinc and Copper from Candida albicans. Infection and Immunity, 2018, 86, .	1.0	98

#	Article	IF	CITATIONS
19	NK Cell Recognition of Candida glabrata through Binding of NKp46 and NCR1 to Fungal Ligands Epa1, Epa6, and Epa7. Cell Host and Microbe, 2016, 20, 527-534.	5.1	74
20	Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology (United) Tj ETQq0 0 0 r	gBTØØverl	ock ⁄2 ⊉0 Tf 50 €
21	Tn7-Based Genome-Wide Random Insertional Mutagenesis of Candida glabrata. Genome Research, 2003, 13, 905-915.	2.4	70
22	Expression Plasmids for Use in <i>Candida glabrata</i> . G3: Genes, Genomes, Genetics, 2013, 3, 1675-1686.	0.8	70
23	Assimilation of NAD ⁺ precursors in <i>Candida glabrata</i> . Molecular Microbiology, 2007, 66, 14-25.	1.2	61
24	Candida albicans FRE8 encodes a member of the NADPH oxidase family that produces a burst of ROS during fungal morphogenesis. PLoS Pathogens, 2017, 13, e1006763.	2.1	57
25	Expression of <i>Candida glabrata</i> Adhesins after Exposure to Chemical Preservatives. Journal of Infectious Diseases, 2009, 199, 1891-1898.	1.9	40
26	Essential Role for Vacuolar Acidification in Candida albicans Virulence. Journal of Biological Chemistry, 2013, 288, 26256-26264.	1.6	39
27	Investigation of the Function of Candida albicans Als3 by Heterologous Expression in Candida glabrata. Infection and Immunity, 2013, 81, 2528-2535.	1.0	35
28	A Novel Downstream Regulatory Element Cooperates with the Silencing Machinery to Repress <i>EPA1</i> Expression in <i>Candida glabrata</i> . Genetics, 2012, 190, 1285-1297.	1.2	33
29	The Glycosylphosphatidylinositol-Anchored <i>DFG</i> Family Is Essential for the Insertion of Galactomannan into the β-(1,3)-Glucan–Chitin Core of the Cell Wall of Aspergillus fumigatus. MSphere, 2019, 4, .	1.3	28
30	Aquaporin inCandida: characterization of a functional water channel protein. Yeast, 2001, 18, 1391-1396.	0.8	25
31	Copper-only superoxide dismutase enzymes and iron starvation stress in Candida fungal pathogens. Journal of Biological Chemistry, 2020, 295, 570-583.	1.6	25
32	De novo genome assembly of <i>Candida glabrata</i> reveals cell wall protein complement and structure of dispersed tandem repeat arrays. Molecular Microbiology, 2020, 113, 1209-1224.	1.2	25
33	Changes in mammalian copper homeostasis during microbial infection. Metallomics, 2020, 12, 416-426.	1.0	25
34	High-Affinity Transporters for NAD ⁺ Precursors in <i>Candida glabrata</i> Are Regulated by Hst1 and Induced in Response to Niacin Limitation. Molecular and Cellular Biology, 2009, 29, 4067-4079.	1.1	24
35	Introduction of point mutations into cloned genes. Methods in Enzymology, 2002, 350, 199-218.	0.4	23
36	Atomic Force Microscopy Demonstrates that Candida glabrata Uses Three Epa Proteins To Mediate	1.3	20

Adhesion to Abiotic Surfaces. MSphere, 2019, 4, .

BRENDAN P CORMACK

#	Article	IF	CITATIONS
37	Avoiding the Ends: Internal Epitope Tagging of Proteins Using Transposon Tn7. Genetics, 2015, 200, 47-58.	1.2	19
38	Cell wall protein variation, breakâ€induced replication, and subtelomere dynamics in <i>Candida glabrata</i> . Molecular Microbiology, 2021, 116, 260-276.	1.2	16
39	Expanded role of the Cuâ€sensing transcription factor Mac1p in <i>Candida albicans</i> . Molecular Microbiology, 2020, 114, 1006-1018.	1.2	13
40	From microbial genomics to meta-genomics. Drug Development Research, 1997, 41, 180-192.	1.4	11
41	Mutants in the Candida glabrata Glycerol Channels Are Sensitized to Cell Wall Stress. Eukaryotic Cell, 2012, 11, 1512-1519.	3.4	11
42	Adhesins in Opportunistic Fungal Pathogens. , 0, , 243-P2.		9
43	Directed Mutagenesis Using the Polymerase Chain Reaction. Current Protocols in Neuroscience, 1998, 3, 4.11.1-4.11.10.	2.6	8
44	The Uses of Green Fluorescent Protein in Prokaryotes. Methods of Biochemical Analysis, 2005, , 163-178.	0.2	6
45	Can You Adhere Me Now? Good. Cell, 2004, 116, 353-354.	13.5	5
46	Function and Regulation of Adhesin Gene Families in <i>Saccharomyces cerevisiae, Candida albicans</i> , and <i>Candida glabrata</i> , 0, , 163-175.		4
47	Functional variability in adhesion and flocculation of yeast megasatellite genes. Genetics, 2022, 221, .	1.2	2
48	Host-microbe interactions: fungi/viruses/parasites. Current Opinion in Microbiology, 1999, 2, 343-347.	2.3	1