Sabina KÄdzierska-Mieszkowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/361883/publications.pdf

Version: 2024-02-01

623734 580821 28 655 14 25 g-index citations h-index papers 28 28 28 694 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology (United Kingdom), 2002, 148, 1757-1765.	1.8	90
2	The Amino-terminal Domain of ClpB Supports Binding to Strongly Aggregated Proteins. Journal of Biological Chemistry, 2005, 280, 34940-34945.	3.4	87
3	Structure and Function of the Middle Domain of ClpB fromEscherichia coliâ€. Biochemistry, 2003, 42, 14242-14248.	2.5	67
4	The Rz1 gene product of bacteriophage lambda is a lipoprotein localized in the outer membrane of Escherichia coli. Gene, 1996, 168, 1-8.	2.2	48
5	Synergistic Cooperation between Two ClpB Isoforms in Aggregate Reactivation. Journal of Molecular Biology, 2010, 396, 697-707.	4.2	42
6	Aggregate-Reactivation Activity of the Molecular Chaperone ClpB from Ehrlichia chaffeensis. PLoS ONE, 2013, 8, e62454.	2.5	37
7	The role of DnaK/DnaJ and GroEL/GroES systems in the removal of endogenous proteins aggregated by heat-shock fromEscherichia colicells. FEBS Letters, 1999, 446, 331-337.	2.8	34
8	Walkerâ€A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB. Protein Science, 2009, 18, 287-293.	7.6	33
9	Expression of the Rz gene and the overlapping Rz1 reading frame present at the right end of the bacteriophage lambda genome. Gene, 1993, 129, 1-8.	2.2	29
10	Aggregation of heat-shock-denatured, endogenous proteins and distribution of the IbpA/B and Fda marker-proteins in Escherichia coli WT and grpE280 cells. Microbiology (United Kingdom), 2004, 150, 247-259.	1.8	29
11	Seroprevalence study of leptospirosis in horses in northern Poland. Veterinary Record, 2013, 172, 269-269.	0.3	24
12	Characterization of the molecular chaperone ClpB from the pathogenic spirochaete Leptospira interrogans. PLoS ONE, 2017, 12, e0181118.	2.5	22
13	Interactions within the ClpB/DnaK bi-chaperone system from Escherichia coli. Archives of Biochemistry and Biophysics, 2005, 444, 61-65.	3.0	19
14	Bacteriophage λ Lysis Gene Product Modified and Inserted into <i>Escherichia coli</i> Outer Membrane: Rz1 Lipoprotein. Microbial Drug Resistance, 1996, 2, 147-153.	2.0	16
15	Isolation and Identification of Putative Protein Substrates of the AAA+ Molecular Chaperone ClpB from the Pathogenic Spirochaete Leptospira interrogans. International Journal of Molecular Sciences, 2018, 19, 1234.	4.1	15
16	Mast cells in mastocytosis and allergy – Important player in metabolic and immunological homeostasis. Advances in Medical Sciences, 2019, 64, 124-130.	2.1	13
17	AAA+ Molecular Chaperone ClpB in Leptospira interrogans: Its Role and Significance in Leptospiral Virulence and Pathogenesis of Leptospirosis. International Journal of Molecular Sciences, 2020, 21, 6645.	4.1	11
18	Immunoreactivity of the AAA+ chaperone ClpB from Leptospira interrogans with sera from Leptospira-infected animals. BMC Microbiology, 2016, 16, 151.	3.3	9

#	Article	IF	CITATIONS
19	Cooperation between two ClpB isoforms enhances the recovery of the recombinant \hat{l}^2 -galactosidase from inclusion bodies. Biochemical and Biophysical Research Communications, 2012, 426, 596-600.	2.1	7
20	Role of the disaggregase ClpB in processing of proteins aggregated as inclusion bodies. Archives of Biochemistry and Biophysics, 2014, 555-556, 23-27.	3.0	5
21	Hsp100 Molecular Chaperone ClpB and Its Role in Virulence of Bacterial Pathogens. International Journal of Molecular Sciences, 2021, 22, 5319.	4.1	5
22	Tumor Suppressors—HTRA Proteases and Interleukin-12—in Pediatric Asthma and Allergic Rhinitis Patients. Medicina (Lithuania), 2020, 56, 298.	2.0	4
23	Title is missing!. Journal of Fluorescence, 2000, 10, 209-209.	2.5	3
24	Identification of ÏfE-Dependent Promoter Upstream of clpB from the Pathogenic Spirochaete Leptospira interrogans by Applying an E. coli Two-Plasmid System. International Journal of Molecular Sciences, 2019, 20, 6325.	4.1	3
25	Immune response against HtrA proteases in children with cutaneous mastocytosis. Acta Biochimica Polonica, 2018, 65, 471-478.	0.5	2
26	The effect of some antibiotic-resistance-conferring plasmids on the removal of the heat-aggregated proteins from Escherichia coli cells. FEMS Microbiology Letters, 1999, 176, 279-284.	1.8	1
27	Comment on the paper by Isla et al. (2014). Veterinary Microbiology, 2015, 180, 167.	1.9	0
28	Letter to the Editor: "Placental HtrA3 Is Regulated by Oxygen Tension and Serum Levels Are Altered During Early Pregnancy in Women Destined to Develop Preeclampsia― Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2065-2065.	3.6	0