Arne Janssen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/36186/publications.pdf Version: 2024-02-01

ADNE LANSSEN

#	Article	IF	CITATIONS
1	HABITAT STRUCTURE AFFECTS INTRAGUILD PREDATION. Ecology, 2007, 88, 2713-2719.	1.5	285
2	A herbivore that manipulates plant defence. Ecology Letters, 2011, 14, 229-236.	3.0	257
3	Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Annals of Botany, 2015, 115, 1015-1051.	1.4	244
4	Phytoseiid predators as potential biological control agents for Bemisia tabaci. Experimental and Applied Acarology, 2001, 25, 271-291.	0.7	238
5	Herbivore arthropods benefit from vectoring plant viruses. Ecology Letters, 2004, 8, 70-79.	3.0	226
6	Biological control of thrips and whiteflies by a shared predator: Two pests are better than one. Biological Control, 2008, 44, 372-379.	1.4	188
7	Habitat structure and population persistence in an experimental community. Nature, 2001, 412, 538-543.	13.7	187
8	Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia, 1997, 110, 179-185.	0.9	158
9	Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Experimental and Applied Acarology, 2002, 27, 57-68.	0.7	138
10	Phytoseiid life-histories, local predator-prey dynamics, and strategies for control of tetranychid mites. Experimental and Applied Acarology, 1992, 14, 233-250.	0.7	136
11	Review Behaviour and indirect interactions in food webs of plant-inhabiting arthropods. Experimental and Applied Acarology, 1998, 22, 497-521.	0.7	130
12	Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Experimental and Applied Acarology, 2003, 31, 15-26.	0.7	118
13	Can plants use entomopathogens as bodyguards?. Ecology Letters, 2000, 3, 228-235.	3.0	114
14	Pollen subsidies promote whitefly control through the numerical response of predatory mites. BioControl, 2010, 55, 253-260.	0.9	108
15	Optimal Host Selection by Drosophila Parasitoids in the Field. Functional Ecology, 1989, 3, 469.	1.7	106
16	Predators Use Volatiles to Avoid Prey Patches with Conspecifics. Journal of Animal Ecology, 1997, 66, 223.	1.3	106
17	An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecology Letters, 2002, 5, 377-385.	3.0	102
18	Herbivore host plant selection: whitefly learns to avoid host plants that harbour predators of her offspring. Oecologia, 2003, 136, 484-488.	0.9	91

#	Article	IF	CITATIONS
19	Adaptation in a spider mite population after long-term evolution on a single host plant. Journal of Evolutionary Biology, 2007, 20, 2016-2027.	0.8	90
20	Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomologia Experimentalis Et Applicata, 1999, 90, 191-198.	0.7	86
21	Diet of a polyphagous arthropod predator affects refuge seeking of its thrips prey. Animal Behaviour, 2000, 60, 369-375.	0.8	86
22	Parasitoid Increases Survival of Its Pupae by Inducing Hosts to Fight Predators. PLoS ONE, 2008, 3, e2276.	1.1	85
23	Pest species diversity enhances control of spider mites and whiteflies by a generalist phytoseiid predator. BioControl, 2010, 55, 387-398.	0.9	82
24	Biological control of broad mites (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Experimental and Applied Acarology, 2010, 52, 29-34.	0.7	80
25	Predators induce interspecific herbivore competition for food in refuge space. Ecology Letters, 1998, 1, 171-177.	3.0	79
26	Intraguild Predation Usually does not Disrupt Biological Control. , 2006, , 21-44.		77
27	Poor host plant quality causes omnivore to consume predator eggs. Journal of Animal Ecology, 2003, 72, 478-483.	1.3	76
28	Interspecific infanticide deters predators. Ecology Letters, 2002, 5, 490-494.	3.0	74
29	Oviposition patterns in a predatory mite reduce the risk of egg predation caused by prey. Ecological Entomology, 2002, 27, 660-664.	1.1	73
30	Clutch Size in a Larval-Pupal Endoparasitoid: Consequences for Fitness. Journal of Animal Ecology, 1994, 63, 807.	1.3	69
31	Can plants betray the presence of multiple herbivore species to predators and parasitoids? The role of learning in phytochemical information networks. Ecological Research, 2006, 21, 3-8.	0.7	67
32	ECOLOGY: Enhanced: The Enemy of My Enemy Is My Ally. Science, 2001, 291, 2104-2105.	6.0	66
33	Extrafloral nectaries of associated trees can enhance natural pest control. Agriculture, Ecosystems and Environment, 2014, 188, 198-203.	2.5	63
34	A Herbivorous Mite Down-Regulates Plant Defence and Produces Web to Exclude Competitors. PLoS ONE, 2011, 6, e23757.	1.1	61
35	Diet of intraguild predators affects antipredator behavior in intraguild prey. Behavioral Ecology, 2005, 16, 364-370.	1.0	60
36	Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biological Control, 2014, 79, 1-7.	1.4	60

#	Article	IF	CITATIONS
37	Prey preference and reproductive success of the generalist predator Orius laevigatus. Oikos, 2002, 97, 116-124.	1.2	59
38	Spider Mites Avoid Plants with Predators. Experimental and Applied Acarology, 1999, 23, 803-815.	0.7	58
39	Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation. Oecologia, 2008, 156, 797-806.	0.9	58
40	Down-regulation of plant defence in a resident spider mite species and its effect upon con- and heterospecifics. Oecologia, 2016, 180, 161-167.	0.9	58
41	Flexible antipredator behaviour in herbivorous mites through vertical migration in a plant. Oecologia, 2002, 132, 143-149.	0.9	56
42	Prey attack and predators defend: counterattacking prey trigger parental care in predators. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1929-1933.	1.2	56
43	Spider mite web mediates anti-predator behaviour. Experimental and Applied Acarology, 2010, 52, 1-10.	0.7	56
44	Predator-prey role reversals, juvenile experience and adult antipredator behaviour. Scientific Reports, 2012, 2, 728.	1.6	56
45	Kin recognition by the predatory mite Iphiseius degenerans : discrimination among own, conspecific, and heterospecific eggs. Ecological Entomology, 2000, 25, 147-155.	1.1	55
46	Odour-Mediated Avoidance of Competition in Drosophila parasitoids: The Ghost of Competition. Oikos, 1995, 73, 356.	1.2	54
47	Improved control capacity of the mite predator Phytoseiulus persimilis (Acari: Phytoseiidae) on tomato. Experimental and Applied Acarology, 1997, 21, 507-518.	0.7	53
48	A phytoseiid predator from the tropics as potential biological control agent for the spider mite Tetranychus urticae Koch (Acari: Tetranychidae). Biological Control, 2007, 42, 105-109.	1.4	53
49	Biological control of an acarine pest by single and multiple natural enemies. Biological Control, 2009, 50, 60-65.	1.4	53
50	Metapopulation dynamics of a persisting predator–prey system in the laboratory: time series analysis. Experimental and Applied Acarology, 1997, 21, 415-430.	0.7	48
51	Evolution of Life-History Patterns in the Phytoseiidae. , 1994, , 70-98.		46
52	Predators induce egg retention in prey. Oecologia, 2007, 150, 699-705.	0.9	46
53	Alternative food and biological control by generalist predatory mites: the case of Amblyseius swirskii. Experimental and Applied Acarology, 2015, 65, 413-418.	0.7	46
54	The benefits of clustering eggs: the role of egg predation and larval cannibalism in a predatory mite. Oecologia, 2002, 131, 20-26.	0.9	45

#	Article	IF	CITATIONS
55	Specificity of odour-mediated avoidance of competition in Drosophila parasitoids. Behavioral Ecology and Sociobiology, 1995, 36, 229-235.	0.6	44
56	Vector and virus induce plant responses that benefit a non-vector herbivore. Basic and Applied Ecology, 2010, 11, 162-169.	1.2	44
57	Biological control of aphids in the presence of thrips and their enemies. BioControl, 2013, 58, 45-55.	0.9	44
58	Attraction of a generalist predator towards herbivore-infested plants. Entomologia Experimentalis Et Applicata, 1999, 93, 303-312.	0.7	43
59	Pesticides do not significantly reduce arthropod pest densities in the presence of natural enemies. Ecology Letters, 2021, 24, 2010-2024.	3.0	42
60	Herbivore-induced Plant Volatiles Trigger Sporulation in Entomopathogenic Fungi: The Case of Neozygites tanajoae Infecting the Cassava Green Mite. Journal of Chemical Ecology, 2005, 31, 1003-1021.	0.9	41
61	Domatia reduce larval cannibalism in predatory mites. Ecological Entomology, 2008, 33, 374-379.	1.1	41
62	Herbivores with similar feeding modes interact through the induction of different plant responses. Oecologia, 2016, 180, 1-10.	0.9	41
63	Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia, 2018, 186, 101-113.	0.9	41
64	Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Experimental and Applied Acarology, 2001, 25, 785-808.	0.7	40
65	Predatory mites avoid ovipositing near counterattacking prey. Experimental and Applied Acarology, 2001, 25, 613-623.	0.7	40
66	Ecology meets plant physiology: herbivore-induced plant responses and their indirect effects on arthropod communities. , 2007, , 188-218.		40
67	Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator. Biological Control, 2017, 105, 19-26.	1.4	40
68	Alternative food promotes broad mite control on chilli pepper plants. BioControl, 2015, 60, 817-825.	0.9	38
69	Patterns of exclusion in an intraguild predator–prey system depend on initial conditions. Journal of Animal Ecology, 2008, 77, 624-630.	1.3	37
70	Evolution of herbivore-induced plant volatiles. Oikos, 2002, 97, 134-138.	1.2	34
71	Reproductive success ofAmblyseius idaeus andA. anonymus on a diet of two-spotted spider mites. Experimental and Applied Acarology, 1988, 4, 41-51.	0.7	33
72	Preselecting predatory mites for biological control: the use of an olfactometer. Bulletin of Entomological Research, 1990, 80, 177-181.	0.5	33

#	Article	IF	CITATIONS
73	Adaptation in the Asexual False Spider Mite Brevipalpus phoenicis: Evidence for Frozen Niche Variation. Experimental and Applied Acarology, 2005, 36, 165-176.	0.7	33
74	Intraguild Interactions Between the Predatory Mites Neoseiulus californicus and Phytoseiulus persimilis. Experimental and Applied Acarology, 2006, 38, 33-46.	0.7	33
75	Phytoseiid predator of whitefly feeds on plant tissue. Experimental and Applied Acarology, 2003, 31, 27-36.	0.7	32
76	Pheromone-Induced Priming of a Defensive Response in Western Flower Thrips. Journal of Chemical Ecology, 2006, 32, 1599-1603.	0.9	32
77	Hyperpredation by generalist predatory mites disrupts biological control of aphids by the aphidophagous gall midge Aphidoletes aphidimyza. Biological Control, 2011, 57, 246-252.	1.4	32
78	Leaf domatia reduce intraguild predation among predatory mites. Ecological Entomology, 2011, 36, 435-441.	1.1	32
79	Interactions between arthropod predators and plants: A conspiracy against herbivorous arthropods?. , 1999, , 207-229.		32
80	To be an intra-guild predator or a cannibal: is prey quality decisive?. Ecological Entomology, 2006, 31, 430-436.	1.1	31
81	Vulnerability of Bemisia tabaci immatures to phytoseiid predators: Consequences for oviposition and influence of alternative food. Entomologia Experimentalis Et Applicata, 2004, 110, 95-102.	0.7	30
82	Rock Powder Can Improve Vermicompost Chemical Properties and Plant Nutrition: an On-farm Experiment. Communications in Soil Science and Plant Analysis, 2018, 49, 1-12.	0.6	30
83	Use of odours by Cycloneda sanguinea to assess patch quality. Entomologia Experimentalis Et Applicata, 2007, 124, 313-318.	0.7	29
84	Invasion success in communities with reciprocal intraguild predation depends on the stage structure of the resident population. Oikos, 2012, 121, 67-76.	1.2	29
85	Searching behaviour of an omnivorous predator for novel and native host plants of its herbivores: a study on arthropod colonization of eucalyptus in Brazil. Entomologia Experimentalis Et Applicata, 2005, 116, 135-142.	0.7	28
86	Active prey mixing as an explanation for polyphagy in predatory arthropods: synergistic dietary effects on egg production despite a behavioural cost. Functional Ecology, 2015, 29, 1317-1324.	1.7	28
87	Prey temporarily escape from predation in the presence of a second prey species. Ecological Entomology, 2012, 37, 529-535.	1.1	26
88	Absence of odour-mediated avoidance of heterospecific competitors by the predatory mite Phytoseiulus persimilis. Entomologia Experimentalis Et Applicata, 1999, 92, 73-82.	0.7	25
89	Cues of intraguild predators affect the distribution of intraguild prey. Oecologia, 2010, 163, 335-340.	0.9	25
90	Generalist red velvet mite predator (Balaustium sp.) performs better on a mixed diet. Experimental and Applied Acarology, 2014, 62, 19-32.	0.7	25

Arne Janssen

#	Article	IF	CITATIONS
91	Olfactory orientation of the truffle beetle, Leiodes cinnamomea. Entomologia Experimentalis Et Applicata, 2003, 109, 147-153.	0.7	24
92	Host-plant species modifies the diet of an omnivore feeding on three trophic levels. Oikos, 2005, 111, 47-56.	1.2	23
93	Non-crop plant to attract and conserve an aphid predator (Coleoptera: Coccinellidae) in tomato. Biological Control, 2017, 115, 129-134.	1.4	23
94	Can plants use an entomopathogenic virus as a defense against herbivores?. Oecologia, 2005, 143, 396-401.	0.9	22
95	Order of invasion affects the spatial distribution of a reciprocal intraguild predator. Oecologia, 2010, 163, 79-89.	0.9	22
96	Herbivores avoid host plants previously exposed to their omnivorous predator Macrolophus pygmaeus. Journal of Pest Science, 2019, 92, 737-745.	1.9	22
97	Do domatia mediate mutualistic interactions between coffee plants and predatory mites?. Entomologia Experimentalis Et Applicata, 2006, 118, 185-192.	0.7	20
98	Modelling Fungal (Neozygites cf. Floridana) Epizootics in Local Populations of Cassava Green Mites (Mononychellus Tanajoa). Experimental and Applied Acarology, 1997, 21, 485-506.	0.7	19
99	Interactions Between Two Neotropical Phytoseiid Predators on Cassava Plants and Consequences for Biological Control of a Shared Spider Mite Prey: a Screenhouse Evaluation. Biocontrol Science and Technology, 2004, 14, 63-76.	0.5	19
100	Interactions mediated by predators in arthropod food webs. Neotropical Entomology, 2001, 30, 1-9.	0.5	18
101	Antipredator behaviours of a spider mite in response to cues of dangerous and harmless predators. Experimental and Applied Acarology, 2016, 69, 263-276.	0.7	18
102	Specificity of odour-mediated avoidance of competition in Drosophila parasitoids. Behavioral Ecology and Sociobiology, 1995, 36, 229-235.	0.6	18
103	Evolution of Exploitation and Defense in Tritrophic Interactions. , 2002, , 297-322.		17
104	How predatory mites find plants with whitefly prey. Experimental and Applied Acarology, 2005, 36, 263-275.	0.7	17
105	Global Persistence Despite Local Extinction in Acarine Predatorâ€Prey Systems: Lessons From Experimental and Mathematical Exercises. Advances in Ecological Research, 2005, , 183-220.	1.4	17
106	Previous and Present Diets of Mite Predators Affect Antipredator Behaviour of Whitefly Prey. Experimental and Applied Acarology, 2006, 38, 113-124.	0.7	17
107	Prey exploitation and dispersal strategies vary among natural populations of a predatory mite. Ecology and Evolution, 2018, 8, 10384-10394.	0.8	17
108	Inferring Colonization Processes from Population Dynamics in Spatially Structured Predator-Prey Systems. Ecology, 2000, 81, 3350.	1.5	16

#	Article	IF	CITATIONS
109	Whether ideal free or not, predatory mites distribute so as to maximize reproduction. Oecologia, 2012, 169, 95-104.	0.9	16
110	Intraguild predation among plant pests: western flower thrips larvae feed on whitefly crawlers. BioControl, 2012, 57, 533-539.	0.9	16
111	Can plants evolve stable alliances with the enemies' enemies?. Journal of Plant Interactions, 2011, 6, 71-75.	1.0	15
112	High-quality alternative food reduces cannibalism in the predatory mite Amblyseius herbicolus (Acari:) Tj ETQq0	0 0 rgBT /	Overlock 10 T 15
113	Performance of <i>Orius insidiosus</i> on alternative foods. Journal of Applied Entomology, 2017, 141, 702-707.	0.8	14
114	How to evaluate the potential occurrence of intraguild predation. Experimental and Applied Acarology, 2017, 72, 103-114.	0.7	14
115	Biodiversity in and around Greenhouses: Benefits and Potential Risks for Pest Management. Insects, 2021, 12, 933.	1.0	14
116	Witnessing predation can affect strength of counterattack in phytoseiids with ontogenetic predator–prey role reversal. Animal Behaviour, 2014, 93, 9-13.	0.8	13
117	Biological control of mealybugs with lacewing larvae is affected by the presence and type of supplemental prey. BioControl, 2016, 61, 555-565.	0.9	13
118	Reciprocal intraguild predation and predator coexistence. Ecology and Evolution, 2018, 8, 6952-6964.	0.8	13
119	The omnivorous predator <i>Macrolophus pygmaeus</i> , a good candidate for the control of both greenhouse whitefly and poinsettia thrips on gerbera plants. Insect Science, 2020, 27, 510-518.	1.5	13
120	Extrafloral nectary-bearing leguminous trees enhance pest control and increase fruit weight in associated coffee plants. Agriculture, Ecosystems and Environment, 2021, 319, 107538.	2.5	13
121	Size of predatory mites and refuge entrance determine success of biological control of the coconut mite. BioControl, 2016, 61, 681-689.	0.9	12
122	Herbivore performance and plant defense after sequential attacks by inducing and suppressing herbivores. Insect Science, 2019, 26, 108-118.	1.5	12
123	Juvenile prey induce antipredator behaviour in adult predators. Experimental and Applied Acarology, 2013, 59, 275-282.	0.7	11
124	Two predatory mite species as potential control agents of broad mites. BioControl, 2017, 62, 505-513.	0.9	11
125	The distribution of herbivores between leaves matches their performance only in the absence of competitors. Ecology and Evolution, 2020, 10, 8405-8415.	0.8	11
126	A predatory mite as potential biological control agent of Diaphorina citri. BioControl, 2021, 66, 237-248.	0.9	11

#	Article	IF	CITATIONS
127	Ants affect citrus pests and their natural enemies in contrasting ways. Biological Control, 2021, 158, 104611.	1.4	11
128	Fitness consequences of food-for-protection strategies in plants. , 2005, , 109-134.		10
129	Time scales of associating food and odor by predator communities in the field. Behavioral Ecology, 2014, 25, 1123-1130.	1.0	10
130	Context-dependent fitness effects of behavioral manipulation by a parasitoid. Behavioral Ecology, 2010, 21, 33-36.	1.0	9
131	Predatory interactions between prey affect patch selection by predators. Behavioral Ecology and Sociobiology, 2017, 71, 66.	0.6	9
132	Leaf domatia do not affect population dynamics of the predatory mite Iphiseiodes zuluagai. Basic and Applied Ecology, 2010, 11, 144-152.	1.2	8
133	No adaptation of a herbivore to a novel host but loss of adaptation to its native host. Scientific Reports, 2015, 5, 16211.	1.6	8
134	INFERRING COLONIZATION PROCESSES FROM POPULATION DYNAMICS IN SPATIALLY STRUCTURED PREDATOR–PREY SYSTEMS. Ecology, 2000, 81, 3350-3361.	1.5	7
135	Distribution and oviposition site selection by predatory mites in the presence of intraguild predators. Experimental and Applied Acarology, 2015, 67, 477-491.	0.7	7
136	Predator performance is impaired by the presence of a second prey species. Bulletin of Entomological Research, 2017, 107, 313-321.	0.5	7
137	Behaviour and indirect interactions in food webs of plant-inhabiting arthropods. , 1999, , 231-249.		6
138	Predators marked with chemical cues from one prey have increased attack success on another prey species. Ecological Entomology, 2015, 40, 62-68.	1.1	6
139	Parasitoids follow herbivorous insects to a novel host plant, generalist predators less so. Entomologia Experimentalis Et Applicata, 2017, 162, 261-271.	0.7	6
140	Gender-specific differences in cannibalism between a laboratory strain and a field strain of a predatory mite. Experimental and Applied Acarology, 2018, 74, 239-247.	0.7	6
141	Compatibility of two predator species for biological control of the two-spotted spider mite. Experimental and Applied Acarology, 2020, 80, 409-422.	0.7	6
142	The use of volatile cues in recognition of kin eggs by predatory mites. Ecological Entomology, 2020, 45, 1220-1223.	1.1	6
143	Odour-mediated sexual attraction in nabids (Heteroptera: Nabidae). European Journal of Entomology, 2008, 105, 159-162.	1.2	6
144	Limited Predator-Induced Dispersal in Whiteflies. PLoS ONE, 2012, 7, e45487.	1.1	5

#	Article	IF	CITATIONS
145	UV light attracts Diaphorina citri and its parasitoid. Biological Control, 2022, 170, 104928.	1.4	5
146	Breaking and entering: predators invade the shelter of their prey and gain protection. Experimental and Applied Acarology, 2015, 67, 247-257.	0.7	4
147	Ontogenetic stage-specific reciprocal intraguild predation. Oecologia, 2018, 188, 743-751.	0.9	4
148	Associative learning in immature lacewings (Ceraeochrysa cubana). Entomologia Experimentalis Et Applicata, 2019, 167, 775-783.	0.7	4
149	Do western flower thrips avoid plants infested with spider mites? Interactions between potential competitors. , 1999, , 375-380.		4
150	Plant feeding by an omnivorous predator affects plant phenology and omnivore performance. Biological Control, 2019, 135, 66-72.	1.4	3
151	Field distribution patterns of pests are asymmetrically affected by the presence of other herbivores. Bulletin of Entomological Research, 2020, 110, 611-619.	0.5	3
152	Predatory mites protect own eggs against predators. Entomologia Experimentalis Et Applicata, 2021, 169, 501-507.	0.7	3
153	The omnivorous predator Macrolophus pygmaeus induces production of plant volatiles that attract a specialist predator. Journal of Pest Science, 2022, 95, 1343-1355.	1.9	3
154	Experimental evolution of cowpea mild mottle virus reveals recombination-driven reduction in virulence accompanied by increases in diversity and viral fitness. Virus Research, 2021, 303, 198389.	1.1	2
155	Estimating intrinsic growth rates of arthropods from partial life tables using predatory mites as examples. Experimental and Applied Acarology, 2022, 86, 327-342.	0.7	2
156	Mite damage provides refuges and affects preference and performance of a subsequent herbivorous moth. Journal of Applied Entomology, 0, , .	0.8	2
157	Plant defences and spider-mite web affect host plant choice and performance of the whitefly Bemisia tabaci. Journal of Pest Science, 2023, 96, 499-508.	1.9	2
158	Males cannibalise and females disperse in the predatory mite Phytoseiulus persimilis. Experimental and Applied Acarology, 2020, 82, 185-198.	0.7	1
159	Benefit of actively mixing prey in a plantâ€inhabiting predatory mite. Ecological Entomology, 0, , .	1.1	1
160	Artificial selection for timing of dispersal in predatory mites yields lines that differ in prey exploitation strategies. Ecology and Evolution, 2022, 12, e8760.	0.8	1
161	Food Web Interactions and Ecosystem Processes. Ecological Studies, 2008, , 175-191.	0.4	0