Subhabrata Maiti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3618545/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissipative self-assembly of vesicular nanoreactors. Nature Chemistry, 2016, 8, 725-731.	13.6	355
2	Transient self-assembly of molecular nanostructures driven by chemical fuels. Current Opinion in Biotechnology, 2017, 46, 27-33.	6.6	94
3	Multivalent Interactions Regulate Signal Transduction in a Self-Assembled Hg ²⁺ Sensor. Journal of the American Chemical Society, 2014, 136, 11288-11291.	13.7	71
4	Label-free fluorimetric detection of histone using quaternized carbon dot–DNA nanobiohybrid. Chemical Communications, 2013, 49, 8851.	4.1	67
5	Monolayer protected gold nanoparticles with metal-ion binding sites: functional systems for chemosensing applications. Chemical Communications, 2015, 51, 9922-9931.	4.1	63
6	In situ synthesized Ag nanoparticle in self-assemblies of amino acid based amphiphilic hydrogelators: development of antibacterial soft nanocomposites. Soft Matter, 2011, 7, 3011.	2.7	61
7	Fuel‣elective Transient Activation of Nanosystems for Signal Generation. Angewandte Chemie - International Edition, 2018, 57, 1611-1615.	13.8	50
8	Refining hydrogelator design: soft materials with improved gelation ability, biocompatibility and matrix for in situ synthesis of specific shaped GNP. Soft Matter, 2011, 7, 7291.	2.7	37
9	Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels. Chemistry - A European Journal, 2017, 23, 11549-11559.	3.3	33
10	Covalently Functionalized Single-Walled Carbon Nanotubes at Reverse Micellar Interface: A Strategy to Improve Lipase Activity. Langmuir, 2012, 28, 1715-1724.	3.5	32
11	Graphene oxide in cetyltrimethylammonium bromide (CTAB) reverse micelle: A befitting soft nanocomposite for improving efficiency of surface-active enzymes. Journal of Colloid and Interface Science, 2013, 395, 111-118.	9.4	31
12	Fuelâ€ S elective Transient Activation of Nanosystems for Signal Generation. Angewandte Chemie, 2018, 130, 1627-1631.	2.0	30
13	Self-Organization of Fluids in a Multienzymatic Pump System. Langmuir, 2019, 35, 3724-3732.	3.5	30
14	Formation of a gold–carbon dot nanocomposite with superior catalytic ability for the reduction of aromatic nitro groups in water. RSC Advances, 2014, 4, 25863-25866.	3.6	28
15	Water-in-oil microemulsion doped with gold nanoparticle decorated single walled carbon nanotube: Scaffold for enhancing lipase activity. Colloids and Surfaces B: Biointerfaces, 2014, 113, 442-449.	5.0	26
16	Influence of Gold Nanoparticles of Varying Size in Improving the Lipase Activity within Cationic Reverse Micelles. Chemistry - A European Journal, 2010, 16, 1941-1950.	3.3	25
17	Probing Enzyme Location in Water-in-Oil Microemulsion Using Enzyme–Carbon Dot Conjugates. Langmuir, 2014, 30, 2448-2459.	3.5	24
18	Dynamic combinatorial chemistry on a monolayer protected gold nanoparticle. Chemical Communications, 2015, 51, 5714-5716.	4.1	22

Subhabrata Maiti

#	Article	IF	CITATIONS
19	Nucleotideâ€Selective Templated Selfâ€Assembly of Nanoreactors under Dissipative Conditions. Angewandte Chemie - International Edition, 2020, 59, 22223-22229.	13.8	21
20	Cold nanorod in reverse micelles: a fitting fusion to catapult lipase activity. Chemical Communications, 2011, 47, 9864.	4.1	20
21	Striking Improvement in Peroxidase Activity of Cytochromeâ€c by Modulating Hydrophobicity of Surfaceâ€Functionalized Gold Nanoparticles within Cationic Reverse Micelles. Chemistry - A European Journal, 2012, 18, 15021-15030.	3.3	18
22	Dictating Catalytic Preference and Activity of a Nanoparticle by Modulating Its Multivalent Engagement. ACS Catalysis, 2021, 11, 8504-8509.	11.2	13
23	GNP confinement at the interface of cationic reverse micelles: influence in improving the lipase activity. RSC Advances, 2012, 2, 9042.	3.6	12
24	Time-gated fluorescence signalling under dissipative conditions. Chemical Communications, 2020, 56, 13979-13982.	4.1	12
25	Superior Protonâ€Transfer Catalytic Promiscuity of Cytochrome†c in Selfâ€Organized Media. ChemBioChem, 2021, 22, 1285-1291.	2.6	12
26	Macromolecular Crowding Effect on the Activity of Liposome-Bound Alkaline Phosphatase: A Paradoxical Inhibitory Action. Langmuir, 2021, 37, 7273-7284.	3.5	12
27	Spatiotemporal dynamics of self-assembled structures in enzymatically induced agonistic and antagonistic conditions. Chemical Science, 2021, 13, 274-282.	7.4	12
28	Perpetuating enzymatically induced spatiotemporal pH and catalytic heterogeneity of a hydrogel by nanoparticles. Chemical Science, 2022, 13, 8557-8566.	7.4	11
29	Spatially controlled clustering of nucleotide-stabilized vesicles. Chemical Communications, 2018, 54, 4818-4821.	4.1	10
30	Deconvolution of Transient Species in a Multivalent Fuelâ€Đriven Multistep Assembly under Dissipative Conditions. ChemSystemsChem, 2020, 2, e1900040.	2.6	10
31	Silver-Based Self-Powered pH-Sensitive Pump and Sensor. Langmuir, 2020, 36, 7948-7955.	3.5	10
32	A modular self-assembled sensing system for heavy metal ions with tunable sensitivity and selectivity. Tetrahedron, 2017, 73, 4950-4954.	1.9	9
33	Interconnectivity between Surface Reactivity and Selfâ€Assembly of Kemp Elimination Catalyzing Nanorods. Chemistry - A European Journal, 2021, 27, 7831-7836.	3.3	8
34	Inhibitory effect of nucleotides on acetylcholine esterase activity and its microflow-based actuation in blood plasma. Chemical Communications, 2022, 58, 3501-3504.	4.1	8
35	Nucleotide‣elective Templated Selfâ€Assembly of Nanoreactors under Dissipative Conditions. Angewandte Chemie, 2020, 132, 22407-22413.	2.0	7
36	Unmodified "GNP–Oligonucleotide―Nanobiohybrids: A Simple Route for Emission Enhancement of DNA Intercalators. Chemistry - A European Journal, 2011, 17, 7538-7548.	3.3	6

SUBHABRATA MAITI

#	ARTICLE	IF	CITATIONS
37	Enzyme aggregation and fragmentation induced by catalysis relevant species. Physical Chemistry Chemical Physics, 2021, 23, 20709-20717.	2.8	5
38	Sucrose-mediated heat-stiffening microemulsion-based gel for enzyme entrapment and catalysis. Chemical Communications, 2020, 56, 10698-10701.	4.1	4
39	Analyzing Catalytic Coâ€operativity and Membrane Parameters in a Substrateâ€driven Vesicular Assembly Modified by Nucleotides. ChemNanoMat, 2022, 8, .	2.8	3
40	Colorimetric Detection of Fluoride Ion by Thiourea Assisted Self-Assembly of Citrate-Capped Gold Nanoparticles. Advanced Science, Engineering and Medicine, 2014, 6, 985-990.	0.3	2
41	Regulating Spatial Localization and Reactivity Biasness of DNAzymes by Metal lons and Oligonucleotides. ChemBioChem, 2022, 23, .	2.6	2