Mitra Mousavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3618476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of a nonenzymatic electrochemical sensor based on a g-C ₃ N ₄ /MWO ₄ (M: Cu, Mn, Co, Ni) composite for the determination of H ₂ O ₂ . New Journal of Chemistry, 2022, 46, 3766-3776.	2.8	10
2	A novel Z-scheme oxygen-doped g-C3N4 nanosheet/NaBiS2 nanoribbon for efficient photocatalytic H2O2 production and organic pollutants degradation. Journal of Physics and Chemistry of Solids, 2022, 163, 110588.	4.0	26
3	In-situ construction of ZnO/Sb2MoO6 nano-heterostructure for efficient visible-light photocatalytic conversion of N2 to NH3. Surfaces and Interfaces, 2022, 30, 101844.	3.0	8
4	Fabrication of S-scheme heterojunction g-C3N4-nanosheet/ZnMoO4 nanocomposite with high efficiency in photocatalytic N2 fixation and Cr(VI) detoxification. Journal of Materials Science, 2022, 57, 9145-9163.	3.7	17
5	Determination and degradation of carbamazepine using g-C3N4@CuS nanocomposite as sensitive fluorescence sensor and efficient photocatalyst. Inorganic Chemistry Communication, 2022, 141, 109512.	3.9	12
6	In situ preparation of g-C3N4 nanosheet/FeOCI: Achievement and promoted photocatalytic nitrogen fixation activity. Journal of Colloid and Interface Science, 2021, 587, 538-549.	9.4	59
7	Photocatalytic degradation of different pollutants by the novel gCN-NS/Black-TiO2 heterojunction photocatalyst under visible light: Introducing a photodegradation model and optimization by response surface methodology (RSM). Materials Chemistry and Physics, 2021, 258, 123912.	4.0	60
8	High-impressive separation of photoinduced charge carriers on step-scheme ZnO/ZnSnO3/Carbon dots heterojunction with efficient activity in photocatalytic NH3 production. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118, 140-151.	5.3	32
9	Fabrication, characterization, and photocatalytic studies of novel ZnO/Ag3BiO3 nanocomposites: impressive photocatalysts for degradation of some dyes. Journal of Materials Science: Materials in Electronics, 2021, 32, 2704-2718.	2.2	6
10	Novel visible-light-responsive Black-TiO2/CoTiO3 Z-scheme heterojunction photocatalyst with efficient photocatalytic performance for the degradation of different organic dyes and tetracycline. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 168-183.	5.3	34
11	Synthesis and characterization of novel ZnO/NiCr2O4 nanocomposite for water purification by degradation of tetracycline and phenol under visible light irradiation. Materials Research Bulletin, 2021, 139, 111247.	5.2	30
12	Synthesis of novel p-n-p BiOBr/ZnO/BiOI heterostructures and their efficient photocatalytic performances in removals of dye pollutants under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112247.	3.9	59
13	Novel p–n–p heterojunction photocatalyst synthesized by BiFeO3, ZnO, and BiOBr nanoparticles: facile preparation and high photocatalytic activity under visible light. Journal of Materials Science: Materials in Electronics, 2020, 31, 19764-19777.	2.2	12
14	Novel ZnO/Ag3PO4/Ag1 photocatalysts: Preparation, characterization, and the excellent visible-light photocatalytic performances. Materials Science in Semiconductor Processing, 2020, 119, 105229.	4.0	28
15	BiOBr and BiOCl decorated on TiO2 QDs: Impressively increased photocatalytic performance for the degradation of pollutants under visible light. Advanced Powder Technology, 2020, 31, 3582-3596.	4.1	39
16	Effective and magnetically recoverable TiO2/Fe3O4/AgI nanocomposite for degradation dye pollutants under visible light illumination. Journal of Materials Science: Materials in Electronics, 2020, 31, 15546-15557.	2.2	1
17	Novel p–n Heterojunction Nanocomposite: TiO ₂ QDs/ZnBi ₂ O ₄ Photocatalyst with Considerably Enhanced Photocatalytic Activity under Visible-Light Irradiation. Journal of Physical Chemistry C, 2020, 124, 27519-27528.	3.1	54
18	Synthesis, characterization, and photocatalytic performance of Ag/AgFeO2 decorated on g-C3N4-nanosheet under the visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 279-292	5.3	35

MITRA MOUSAVI

#	Article	IF	CITATIONS
19	Deposited CuBi2O4 and Bi3ClO4 nanoparticles on g-C3N4 nanosheet: a promising visible light-induced photocatalyst toward the removal of tetracycline hydrochloride and rhodamine B. Journal of Materials Science, 2020, 55, 7775-7791.	3.7	27
20	Preparation of novel ternary TiO2 QDs/CDs/AgI nanocomposites with superior visible-light induced photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 385, 112070.	3.9	23
21	BiOBr and AgBr co-modified ZnO photocatalyst: A novel nanocomposite with p-n-n heterojunctions for highly effective photocatalytic removal of organic contaminants. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 11-23.	3.9	82
22	Fabrication of novel ZnO/BiOBr/C-Dots nanocomposites with considerable photocatalytic performances in removal of organic pollutants under visible light. Advanced Powder Technology, 2019, 30, 1197-1209.	4.1	69
23	Exceptional photocatalytic activity for g-C3N4 activated by H2O2 and integrated with Bi2S3 and Fe3O4 nanoparticles for removal of organic and inorganic pollutants. Advanced Powder Technology, 2019, 30, 524-537.	4.1	52
24	Boosting visible-light photocatalytic performance of g-C3N4/Fe3O4 anchored with CoMoO4 nanoparticles: Novel magnetically recoverable photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368, 120-136.	3.9	143
25	Deposition of CuWO 4 nanoparticles over g-C 3 N 4 /Fe 3 O 4 nanocomposite: Novel magnetic photocatalysts with drastically enhanced performance under visible-light. Advanced Powder Technology, 2018, 29, 1379-1392.	4.1	97
26	Combination of Ag 2 CrO 4 and AgI semiconductors with g-C 3 N 4 : Novel nanocomposites with substantially improved photocatalytic performance under visible light. Solid State Sciences, 2018, 77, 62-73.	3.2	16
27	Novel ternary g-C 3 N 4 /Fe 3 O 4 /MnWO 4 nanocomposites: Synthesis, characterization, and visible-light photocatalytic performance for environmental purposes. Journal of Materials Science and Technology, 2018, 34, 1638-1651.	10.7	80
28	Decoration of Fe3O4 and CoWO4 nanoparticles over graphitic carbon nitride: Novel visible-light-responsive photocatalysts with exceptional photocatalytic performances. Materials Research Bulletin, 2018, 105, 159-171.	5.2	66
29	Integration of NiWO4 and Fe3O4 with graphitic carbon nitride to fabricate novel magnetically recoverable visible-light-driven photocatalysts. Journal of Materials Science, 2018, 53, 9046-9063.	3.7	62
30	Magnetically recoverable highly efficient visible-light-active g-C3N4/Fe3O4/Ag2WO4/AgBr nanocomposites for photocatalytic degradations of environmental pollutants. Advanced Powder Technology, 2018, 29, 94-105.	4.1	111
31	Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. Journal of Materials Science: Materials in Electronics, 2018, 29, 1719-1747.	2.2	462
32	Novel magnetically separable g-C3N4/Fe3O4/Ag3PO4/Co3O4 nanocomposites: Visible-light-driven photocatalysts with highly enhanced activity. Advanced Powder Technology, 2017, 28, 1540-1553.	4.1	68
33	Computer Aided Drug Design for Multi-Target Drug Design: SAR /QSAR, Molecular Docking and Pharmacophore Methods. Current Drug Targets, 2017, 18, 556-575.	2.1	78
34	Novel magnetically separable g-C3N4/Fe3O4/Ag3VO4/Ag2CrO4 nanocomposites as efficient visible-light-driven photocatalysts for degradation of water pollutants. Journal of Materials Science: Materials in Electronics, 2016, 27, 8532-8545.	2.2	23
35	Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. Journal of Colloid and Interface Science, 2016, 480, 218-231.	9.4	381
36	Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: Novel visible-light-driven photocatalysts based on graphitic carbon nitride. Journal of Colloid and Interface Science, 2016, 465, 83-92.	9.4	258

#	Article	IF	CITATIONS
37	Ternary g-C3N4/Fe3O4/Ag3VO4 nanocomposites: Novel magnetically separable visible-light-driven photocatalysts for efficiently degradation of dye pollutants. Materials Chemistry and Physics, 2015, 163, 421-430.	4.0	63
38	Application of Multivariate Linear and Nonlinear Calibration and Classification Methods in Drug Design. Combinatorial Chemistry and High Throughput Screening, 2015, 18, 795-808.	1.1	12