
Michel C Milinkovitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3618061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photonic crystals cause active colour change in chameleons. Nature Communications, 2015, 6, 6368.	5.8	916
2	Amphibians as Indicators of Early Tertiary "Out-of-India" Dispersal of Vertebrates. Science, 2001, 292, 93-95.	6.0	203
3	Phylogeny and Biogeography of a Cosmopolitan Frog Radiation: Late Cretaceous Diversification Resulted in Continent-Scale Endemism in the Family Ranidae. Systematic Biology, 2006, 55, 579-594.	2.7	190
4	The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10516-10521.	3.3	178
5	Changes in Hox genes' structure and function during the evolution of the squamate body plan. Nature, 2010, 464, 99-103.	13.7	160
6	Evaluating Intraspecific "Network―Construction Methods Using Simulated Sequence Data: Do Existing Algorithms Outperform the Global Maximum Parsimony Approach?. Systematic Biology, 2005, 54, 363-372.	2.7	132
7	The anatomical placode in reptile scale morphogenesis indicates shared ancestry among skin appendages in amniotes. Science Advances, 2016, 2, e1600708.	4.7	125
8	Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsumalizards. BMC Biology, 2013, 11, 105.	1.7	99
9	A living mesoscopic cellular automaton made of skin scales. Nature, 2017, 544, 173-179.	13.7	97
10	Feather arrays are patterned by interacting signalling and cell density waves. PLoS Biology, 2019, 17, e3000132.	2.6	91
11	MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics. BMC Bioinformatics, 2010, 11, 379.	1.2	89
12	Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises. Molecular Ecology, 2008, 11, 2265-2283.	2.0	88
13	Crocodile Head Scales Are Not Developmental Units But Emerge from Physical Cracking. Science, 2013, 339, 78-81.	6.0	78
14	Evidence for male dispersal along the coasts but no migration in pelagic waters in dusky dolphins (Lagenorhynchus obscurus). Molecular Ecology, 2004, 14, 107-121.	2.0	58
15	Escaping the mouse trap: the selection of new Evo-Devo model species. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 337-346.	0.6	55
16	The genome sequence of the corn snake (Pantherophis guttatus), a valuable resource for EvoDevo studies in squamates. International Journal of Developmental Biology, 2014, 58, 881-888.	0.3	55
17	Contrasted Evolution of the Vomeronasal Receptor Repertoires in Mammals and Squamate Reptiles. Genome Biology and Evolution, 2013, 5, 389-401.	1.1	54
18	Reptilian-transcriptome v1.0, a glimpse in the brain transcriptome of five divergent Sauropsida lineages and the phylogenetic position of turtles. EvoDevo, 2011, 2, 19.	1.3	52

#	Article	IF	CITATIONS
19	Genetic analysis of a successful repatriation programme: giant Galápagos tortoises. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 341-345.	1.2	51
20	Crocodylians evolved scattered multi-sensory micro-organs. EvoDevo, 2013, 4, 19.	1.3	51
21	Retroviral envelope <i>syncytin</i> capture in an ancestrally diverged mammalian clade for placentation in the primitive Afrotherian tenrecs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4332-41.	3.3	49
22	2× genomes - depth does matter. Genome Biology, 2010, 11, R16.	13.9	47
23	Recovery of a nearly extinct <scp>G</scp> alápagos tortoise despite minimal genetic variation. Evolutionary Applications, 2013, 6, 377-383.	1.5	42
24	Molecular genetic analysis of a captive-breeding program: the vulnerable endemic Jamaican yellow boa. Conservation Genetics, 2009, 10, 69-77.	0.8	36
25	Amelanism in the corn snake is associated with the insertion of an LTR-retrotransposon in the OCA2 gene. Scientific Reports, 2015, 5, 17118.	1.6	36
26	Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics. Genome Biology and Evolution, 2015, 7, 1827-1841.	1.1	34
27	MANTIS: a phylogenetic framework for multi-species genome comparisons. Bioinformatics, 2008, 24, 151-157.	1.8	33
28	Genome mapping of a <i>LYST</i> mutation in corn snakes indicates that vertebrate chromatophore vesicles are lysosome-related organelles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26307-26317.	3.3	32
29	Elephants evolved strategies reducing the biomechanical complexity of their trunk. Current Biology, 2021, 31, 4727-4737.e4.	1.8	32
30	Population structure of nuclear and mitochondrial DNA variation among South American Burmeister's porpoises (Phocoena spinipinnis). Conservation Genetics, 2005, 6, 431-443.	0.8	29
31	Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan. ELife, 2016, 5, .	2.8	29
32	Locally-curved geometry generates bending cracks in the African elephant skin. Nature Communications, 2018, 9, 3865.	5.8	29
33	Higher impact of female than male migration on population structure in large mammals. Molecular Ecology, 2000, 9, 1159-1163.	2.0	24
34	Phylogeography and support vector machine classification of colour variation in panther chameleons. Molecular Ecology, 2015, 24, 3455-3466.	2.0	23
35	Giant Galápagos tortoises; molecular genetic analyses identify a trans-island hybrid in a repatriation program of an endangered taxon. BMC Ecology, 2007, 7, 2.	3.0	22
36	Applications of Molecular Data in Cetacean Taxonomy and Population Genetics with Special Emphasis on Defining Species Boundaries. , 2002, , 325-359.		19

MICHEL C MILINKOVITCH

#	Article	IF	CITATIONS
37	Reaction-diffusion in a growing 3D domain of skin scales generates a discrete cellular automaton. Nature Communications, 2021, 12, 2433.	5.8	17
38	A pragmatic approach for selecting evo-devo model species in amniotes. , 2008, , 123-143.		16
39	Two waves of anisotropic growth generate enlarged follicles in the spiny mouse. EvoDevo, 2014, 5, 33.	1.3	16
40	R2OBBIE-3D, a Fast Robotic High-Resolution System for Quantitative Phenotyping of Surface Geometry and Colour-Texture. PLoS ONE, 2015, 10, e0126740.	1.1	15
41	Historical Constraints on Vertebrate Genome Evolution. Genome Biology and Evolution, 2010, 2, 13-18.	1.1	13
42	Molecular identification of small cetacean samples from Peruvian fish markets. Conservation Genetics, 2010, 11, 2207-2218.	0.8	13
43	Phylogenetic Analyses of DNA and Allozyme Data Suggest that Gonioctena Leaf Beetles (Coleoptera;) Tj ETQq1 Systematic Biology, 1997, 46, 722.	1 0.78431 2.7	4 rgBT /Overl 13
44	Assessing the Applicability of the GTR Nucleotide Substitution Model through Simulations. Evolutionary Bioinformatics, 2006, 2, 117693430600200.	0.6	11
45	Elastic instability during branchial ectoderm development causes folding of the Chlamydosaurus erectile frill. ELife, 2019, 8, .	2.8	8
46	Bifurcation Analysis of Reaction Diffusion Systems on Arbitrary Surfaces. Bulletin of Mathematical Biology, 2017, 79, 788-827.	0.9	7
47	Phylogenetic mapping of scale nanostructure diversity in snakes. BMC Evolutionary Biology, 2019, 19, 91.	3.2	7
48	Numerical approximation of a 3D mechanochemical interface model for skin patterning. Journal of Computational Physics, 2019, 384, 383-404.	1.9	7
49	Molecular phylogenetic analyses indicate extensive morphological convergence between the "yeti" and primates. Molecular Phylogenetics and Evolution, 2004, 31, 1-3.	1.2	7
50	Lizard Skin Patterns and the Ising Model. Physical Review Letters, 2022, 128, 048102.	2.9	7
51	Translucent in air and iridescent in water: structural analysis of a salamander egg sac. Soft Matter, 2020, 16, 1714-1721.	1.2	4
52	Emergence of self-organizational patterning at the mesoscopic scale. Developmental Cell, 2021, 56, 719-721.	3.1	3