Yunsheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3617955/publications.pdf Version: 2024-02-01

YUNSHENC WANC

#	Article	IF	CITATIONS
1	Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115, 63-77.	11.1	511
2	Comparative testing of single-tree detection algorithms under different types of forest. Forestry, 2012, 85, 27-40.	2.3	280
3	International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144, 137-179.	11.1	254
4	Is field-measured tree height as reliable as believed – A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147, 132-145.	11.1	179
5	A Lidar Point Cloud Based Procedure for Vertical Canopy Structure Analysis And 3D Single Tree Modelling in Forest. Sensors, 2008, 8, 3938-3951.	3.8	154
6	International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 5011-5027.	6.3	129
7	Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes. Remote Sensing, 2015, 7, 15933-15954.	4.0	100
8	Forest Data Collection Using Terrestrial Image-Based Point Clouds From a Handheld Camera Compared to Terrestrial and Personal Laser Scanning. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 5117-5132.	6.3	90
9	Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services. Sensors, 2014, 14, 1228-1248.	3.8	88
10	Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements. Forest Ecosystems, 2019, 6, .	3.1	86
11	Autonomous Collection of Forest Field Reference—The Outlook and a First Step with UAV Laser Scanning. Remote Sensing, 2017, 9, 785.	4.0	85
12	The Use of a Hand-Held Camera for Individual Tree 3D Mapping in Forest Sample Plots. Remote Sensing, 2014, 6, 6587-6603.	4.0	84
13	Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164, 41-60.	11.1	83
14	In-situ measurements from mobile platforms: An emerging approach to address the old challenges associated with forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143, 97-107.	11.1	78
15	Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161, 246-262.	11.1	77
16	In situ biomass estimation at tree and plot levels: What did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest. Remote Sensing of Environment, 2019, 232, 111309.	11.0	53
17	Mean Shift Segmentation Assessment for Individual Forest Tree Delineation from Airborne Lidar Data. Remote Sensing, 2019, 11, 1263.	4.0	45
18	Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references. International Journal of Applied Earth Observation and Geoinformation, 2017, 56, 13-23.	2.8	43

YUNSHENG WANG

#	Article	IF	CITATIONS
19	Twoâ€dimensional and threeâ€dimensional computational models in hydrodynamic and morphodynamic reconstructions of a river bend: sensitivity and functionality. Hydrological Processes, 2015, 29, 1604-1629.	2.6	40
20	Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 156, 94-107.	11.1	37
21	Quantitative Assessment of Scots Pine (<i>Pinus Sylvestris</i> L.) Whorl Structure in a Forest Environment Using Terrestrial Laser Scanning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3598-3607.	4.9	33
22	Variability of wood properties using airborne and terrestrial laser scanning. Remote Sensing of Environment, 2019, 235, 111474.	11.0	31
23	Gravel transport by ice in a subarctic river from accurate laser scanning. Geomorphology, 2015, 246, 113-122.	2.6	28
24	A Long-Term Terrestrial Laser Scanning Measurement Station to Continuously Monitor Structural and Phenological Dynamics of Boreal Forest Canopy. Frontiers in Plant Science, 2020, 11, 606752.	3.6	28
25	3D Modeling of Coarse Fluvial Sediments Based on Mobile Laser Scanning Data. Remote Sensing, 2013, 5, 4571-4592.	4.0	25
26	Empirical Modeling of Spatial 3D Flow Characteristics Using a Remote-Controlled ADCP System: Monitoring a Spring Flood. Water (Switzerland), 2015, 7, 217-247.	2.7	24
27	Assessing branching structure for biomass and wood quality estimation using terrestrial laser scanning point clouds. Canadian Journal of Remote Sensing, 2018, 44, 462-475.	2.4	24
28	Comparing features of single and multi-photon lidar in boreal forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168, 268-276.	11.1	23
29	Seamless integration of above- and under-canopy unmanned aerial vehicle laser scanning for forest investigation. Forest Ecosystems, 2021, 8, .	3.1	18
30	A Novel GNSS Technique for Predicting Boreal Forest Attributes at Low Cost. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 4855-4867.	6.3	12
31	Fast registration of forest terrestrial laser scans using key points detected from crowns and stems. International Journal of Digital Earth, 2020, 13, 1585-1603.	3.9	10
32	Can global navigation satellite system signals reveal the ecological attributes of forests?. International Journal of Applied Earth Observation and Geoinformation, 2016, 50, 74-79.	2.8	9
33	Estimating Ground Level and Canopy Top Elevation With Airborne Microwave Profiling Radar. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 2283-2294.	6.3	9
34	Reciprocal Estimation of Pedestrian Location and Motion State toward a Smartphone Geo-Context Computing Solution. Micromachines, 2015, 6, 699-717.	2.9	7
35	Forest Inventory Using Laser Scanning. , 2018, , 379-412.		3
36	Interest point detection from multiâ€beam light detection and ranging point cloud using unsupervised convolutional neural network. IET Image Processing, 2021, 15, 369-377.	2.5	3