
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/361787/publications.pdf Version: 2024-02-01

YAN-XIA CIII

#	Article	IF	CITATIONS
1	Transfer Printing of Perovskite Whispering Gallery Mode Laser Cavities by Thermal Release Tape. Nanoscale Research Letters, 2022, 17, 8.	5.7	5
2	2D Perovsktie Substrate-Assisted CsPbI ₃ Film Growth for High-Efficiency Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 7417-7427.	8.0	10
3	Boosting Continuousâ€Wave Laserâ€Driven Nonlinear Photothermal White Light Generation by Nanoscale Porosity. Advanced Materials, 2022, 34, e2106368.	21.0	15
4	Enhancing Hot-Electron Photodetection of a TiO2/Au Schottky Junction by Employing a Hybrid Plasmonic Nanostructure. Materials, 2022, 15, 2737.	2.9	4
5	Multifunction Sandwich Structure Based on Diffusible 2-Chloroethylamine for High-Efficiency and Stable Tin–Lead Mixed Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 118-129.	4.6	6
6	A comprehensive optimization strategy: potassium phytate-doped SnO ₂ as the electron-transport layer for high-efficiency perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 7641-7650.	5.5	2
7	Passivation of degradation path enables high performance perovskite nanoplatelet lasers with high operational stability. Photonics Research, 2022, 10, 1440.	7.0	4
8	High e fficiency perovskite solar cells with PTAA hole transport layer enabled by PMMA:F4-TCNQ buried interface layer. Journal of Materials Chemistry C, 2022, 10, 9714-9722.	5.5	8
9	Status and Outlook of Metal–Inorganic Semiconductor–Metal Photodetectors. Laser and Photonics Reviews, 2021, 15, .	8.7	67
10	Maxwell's demon-like nonreciprocity by non-Hermitian gyrotropic metasurfaces. Physical Review Research, 2021, 3, .	3.6	6
11	Charge transporting materials for perovskite solar cells. Rare Metals, 2021, 40, 2690-2711.	7.1	23
12	Toward high-performance semitransparent perovskite solar cells: interfacial modification and charge extraction perspectives. Materials Today Energy, 2021, 21, 100833.	4.7	8
13	Application of quantum dots in perovskite solar cells. Nanotechnology, 2021, 32, 482003.	2.6	6
14	Interface modification of an electron transport layer using europium acetate for enhancing the performance of P3HT-based inorganic perovskite solar cells. Physical Chemistry Chemical Physics, 2021, 23, 23818-23826.	2.8	6
15	Photodetector Based on CsPbBr3/Cs4PbBr6 Composite Nanocrystals with High Detectivity. Crystals, 2021, 11, 1287.	2.2	3
16	Sunlight-Activated Orange Persistent Luminescence from Bi-Doped SrBaZn ₂ Ga ₂ O ₇ for Warm-Color Optical Applications. Inorganic Chemistry, 2021, 60, 19233-19241.	4.0	13
17	Efficient inverted perovskite solar cells with preferential orientation and suppressed defects of methylammonium lead iodide by introduction of phenothiazine as additive. Journal of Alloys and Compounds, 2020, 823, 153717.	5.5	13
18	In situ growth of a 2D/3D mixed perovskite interface layer by seed-mediated and solvent-assisted Ostwald ripening for stable and efficient photovoltaics. Journal of Materials Chemistry C, 2020, 8, 2425-2435.	5.5	29

YAN-XIA CUI

#	Article	IF	CITATIONS
19	Plasmonic nanoprism enhanced quasi-2D Ruddlesden–Popper layered perovskite photodetectors. Journal of Materials Chemistry C, 2020, 8, 1110-1117.	5.5	19
20	Metasurfaces Composed of Plasmonic Molecules: Hybridization Between Parallel and Orthogonal Surface Lattice Resonances. Advanced Optical Materials, 2020, 8, 1901109.	7.3	26
21	Interface Modification of a Perovskite/Hole Transport Layer with Tetraphenyldibenzoperiflanthene for Highly Efficient and Stable Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 45073-45082.	8.0	12
22	Unravelling the role of C60 derivatives as additives into active layers for achieving high-efficiency planar perovskite solar cells. Carbon, 2020, 167, 160-168.	10.3	16
23	Fluorinated triphenylamine-based dopant-free hole-transporting material for high-performance inverted perovskite solar cells. Chemical Engineering Journal, 2020, 402, 125923.	12.7	25
24	Enhanced Efficiency and Stability of Inverted Planar Perovskite Solar Cells With Piperazine as an Efficient Dopant Into PCBM. IEEE Journal of Photovoltaics, 2020, 10, 811-817.	2.5	7
25	Recent advances in black phosphorus/carbon hybrid composites: from improved stability to applications. Journal of Materials Chemistry A, 2020, 8, 4647-4676.	10.3	39
26	Stability of Perovskite Light Sources: Status and Challenges. Advanced Optical Materials, 2020, 8, 1902012.	7.3	54
27	High performance flexible organic photomultiplication photodetector based on an ultra-thin silver film transparent electrode. Nanotechnology, 2020, 31, 314001.	2.6	17
28	Carrier lifetime exceeding 81 ns in single crystalline perovskite nanowires enable large on-off ratio photodetectors. Organic Electronics, 2020, 83, 105744.	2.6	7
29	High detectivity photodetectors based on perovskite nanowires with suppressed surface defects. Photonics Research, 2020, 8, 1862.	7.0	23
30	Boosting the efficiency of quasi two-dimensional perovskite solar cells via an interfacial layer of metallic nanoparticles. Organic Electronics, 2019, 74, 190-196.	2.6	14
31	Effect of photogenerated carrier distribution on performance enhancement of photomultiplication organic photodetectors. Organic Electronics, 2019, 68, 56-62.	2.6	15
32	Single-crystalline lead halide perovskite wafers for high performance photodetectors. Journal of Materials Chemistry C, 2019, 7, 8357-8363.	5.5	33
33	Double electron transport layers for efficient and stable organic-inorganic hybrid perovskite solar cells. Organic Electronics, 2019, 70, 292-299.	2.6	20
34	Enhanced performance of perovskite solar cells by the incorporation of the luminescent small molecule DBP: perovskite absorption spectrum modification and interface engineering. Journal of Materials Chemistry C, 2019, 7, 5686-5694.	5.5	28
35	Record‣owâ€Threshold Lasers Based on Atomically Smooth Triangular Nanoplatelet Perovskite. Advanced Functional Materials, 2019, 29, 1805553.	14.9	52
36	Nanodevices: Record-Low-Threshold Lasers Based on Atomically Smooth Triangular Nanoplatelet Perovskite (Adv. Funct. Mater. 2/2019). Advanced Functional Materials, 2019, 29, 1970012.	14.9	1

#	Article	lF	CITATIONS
37	Performance improvement in inverted organic solar cells by incorporating core-shell SiO2@Au plasmonic structures. , 2019, , .		3
38	Broadband and wide-angle light absorption of organic solar cells based on multiple-depths metal grating. Optics Express, 2019, 27, A596.	3.4	12
39	Enhanced Performance in Perovskite Optoelectronic Devices. , 2019, , .		0
40	Enhancing performance of inverted organic solar cells by nano-imprinting the active layer with a PDMS template. , 2019, , .		0
41	Entire mirror-like perovskite films for high-performance perovskite solar cells: The role of polar anti-solvent sec-pentyl alcohol. Organic Electronics, 2018, 57, 133-139.	2.6	17
42	UV-driven overall water splitting using unsupported gold nanoparticles as photocatalysts. Chemical Communications, 2018, 54, 1845-1848.	4.1	32
43	Controllable deposition of regular lead iodide nanoplatelets and their photoluminescence at room temperature. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 97, 130-135.	2.7	12
44	Research Progress in Organic Photomultiplication Photodetectors. Nanomaterials, 2018, 8, 713.	4.1	44
45	Fluorinated dopant-free hole-transporting material for efficient and stable perovskite solar cells with carbon cathode. Journal of Power Sources, 2018, 401, 29-36.	7.8	38
46	Metal-island-film-based plasmonic triple-layer absorber. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1469.	2.1	1
47	High Performance Ultrathin MoO3/Ag Transparent Electrode and Its Application in Semitransparent Organic Solar Cells. Nanomaterials, 2018, 8, 473.	4.1	28
48	Formation of Large Grain and Compact CH3NH3Pb(I <inline-formula> <tex-math) 0="" 10<="" etqq0="" overlock="" rgbt="" td="" tj=""><td>0 Tf 50 312 2.5</td><td>2 Td (notatior 8</td></tex-math)></inline-formula>	0 Tf 50 312 2.5	2 Td (notatior 8
10	Journal of Photovoltaics, 2018, 8, 1017-1022.	2.0	0
49	High efficiency planar Sn–Pb binary perovskite solar cells: controlled growth of large grains via a one-step solution fabrication process. Journal of Materials Chemistry C, 2017, 5, 2360-2367.	5.5	60
50	Absorption Enhancement in Thin Organic Solar Cells With MoO3/Ag/MoO3 Transparent Anode Based on Short-Pitched Metallic Grating. IEEE Photonics Journal, 2017, 9, 1-7.	2.0	2
51	Improved Efficiency of Organic Photovoltaic Cells by Incorporation of AuAg-Alloyed Nanoprisms. IEEE Journal of Photovoltaics, 2017, 7, 1036-1041.	2.5	12
52	Broadband EQE enhancement in organic solar cells with multiple-shaped silver nanoparticles: Optical coupling and interfacialÂengineering. Materials Today Energy, 2017, 3, 84-91.	4.7	19
53	Enhanced light out-coupling efficiency and reduced efficiency roll-off in phosphorescent OLEDs with a spontaneously distributed embossed structure formed by a spin-coating method. RSC Advances, 2017, 7, 43987-43993.	3.6	7
54	Flexible broadband plasmonic absorber on moth-eye substrate. Materials Today Energy, 2017, 5, 181-186.	4.7	22

#	Article	IF	CITATIONS
55	Profiling Light Absorption Enhancement in Two-Dimensional Photonic-Structured Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1324-1328.	2.5	16
56	Comparison of Nanohole-Type and Nanopillar-Type Patterned Metallic Electrodes Incorporated in Organic Solar Cells. Nanoscale Research Letters, 2017, 12, 538.	5.7	6
57	Tungsten based anisotropic metamaterial as an ultra-broadband absorber. Optical Materials Express, 2017, 7, 606.	3.0	65
58	Effect of spherical metallic nanoparticles in active layer on absorption enhancement in organic solar cells. Journal of Photonics for Energy, 2017, 7, 1.	1.3	2
59	Broad-band three dimensional nanocave ZnO thin film photodetectors enhanced by Au surface plasmon resonance. Nanoscale, 2016, 8, 8924-8930.	5.6	43
60	Beam Collimation Using an Anisotropic Metamaterial Slab Without Any Nanometer-Sized Aperture. Plasmonics, 2016, 11, 803-809.	3.4	2
61	Dual-Layer Nanostructured Flexible Thin-Film Amorphous Silicon Solar Cells with Enhanced Light Harvesting and Photoelectric Conversion Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 10929-10936.	8.0	57
62	Incorporating silver-SiO2 core-shell nanocubes for simultaneous broadband absorption and charge collection enhancements in organic solar cells. Synthetic Metals, 2016, 220, 612-620.	3.9	19
63	Efficient Light Trapping in Organic Solar Cell Using a Short-Pitched Hexagonal Array of Metallic Nanocylinders. IEEE Photonics Journal, 2016, 8, 1-9.	2.0	23
64	Efficient Light Absorption in Organic Solar Cells Based on Two-Dimensional Arrayed Dielectric Nanospheres. IEEE Photonics Journal, 2016, 8, 1-9.	2.0	3
65	Effective medium analysis of absorption enhancement in short-pitch metal grating incorporated organic solar cells. Optics Express, 2016, 24, A1408.	3.4	8
66	Prominent Efficiency Enhancement in Perovskite Solar Cells Employing Silica-Coated Gold Nanorods. Journal of Physical Chemistry C, 2016, 120, 6996-7004.	3.1	87
67	Ultra-Thin Organic Solar Cells Incorporating Dielectric-Coated Comb Silver Nanogratings. Plasmonics, 2016, 11, 151-157.	3.4	9
68	Broadband light absorption enhancement in moth's eye nanostructured organic solar cells. AIP Advances, 2015, 5, 057164.	1.3	25
69	Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application. Applied Optics, 2015, 54, 10232.	2.1	34
70	Improved performances of CuPc/C60-based solar cell by using randomly and irregularly embossed PEDOT:PSS as anode buffer layer. Optics Communications, 2015, 346, 188-193.	2.1	5
71	Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers. Applied Physics Letters, 2015, 106, .	3.3	39
72	Improved light outcoupling of organic light-emitting diodes by randomly embossed nanostructure. Synthetic Metals, 2015, 203, 200-207.	3.9	7

#	Article	IF	CITATIONS
73	Fine tuning of terpolymer properties by incorporating electron-accepting difluorobenzene and diketopyrrolopyrrole units. Journal of Materials Science, 2015, 50, 5363-5370.	3.7	4
74	Absorption Enhancement in Organic Solar Cells with a Built-In Short-Pitch Plasmonic Grating. Plasmonics, 2015, 10, 773-781.	3.4	13
75	Reduced efficiency roll-off in phosphorescent OLEDs with a stack emitting layer facilitating triplet exciton diffusion. RSC Advances, 2015, 5, 89041-89046.	3.6	5
76	Efficiency enhancement in organic solar cells by incorporating silica-coated gold nanorods at the buffer/active interface. Journal of Materials Chemistry C, 2015, 3, 9859-9868.	5.5	34
77	Semitransparent inverted organic solar cell with improved absorption and reasonable transparency perception based on the nanopatterned MoO 3 / Ag / MoO 3 anode. Journal of Nanophotonics, 2015, 9, 093043.	1.0	13
78	Improved performance of organic solar cells by incorporating silica-coated silver nanoparticles in the buffer layer. Journal of Materials Chemistry C, 2015, 3, 1082-1090.	5.5	50
79	Omnidirectional and broadband optical absorption enhancement in small molecule organic solar cells by a patterned MoO3/Ag/MoO3 transparent anode. Optics Communications, 2015, 338, 226-232.	2.1	13
80	Efficient Broadband Absorber Based on Plasmonic Nanoparticles. , 2015, , .		0
81	High-efficiency, broad-band and wide-angle optical absorption in ultra-thin organic photovoltaic devices. Optics Express, 2014, 22, A376.	3.4	27
82	A Conjugated Random Copolymer of Benzodithiopheneâ€Difluorobenzeneâ€Diketopyrrolopyrrole with Full Visibleâ€Light Absorption for Bulkâ€Heterojunction Solar Cells. Macromolecular Chemistry and Physics, 2014, 215, 2119-2124.	2.2	4
83	Omnidirectional and polarization-insensitive light absorption enhancement in an organic photovoltaic device using a one-dimensional nanograting. Journal of Modern Optics, 2014, 61, 1714-1722.	1.3	11
84	Efficient multiband absorber based on one-dimensional periodic metal–dielectric photonic crystal with a reflective substrate. Optics Letters, 2014, 39, 331.	3.3	45
85	Plasmonic and metamaterial structures as electromagnetic absorbers. Laser and Photonics Reviews, 2014, 8, 495-520.	8.7	489
86	Band offsets of Er 2 O 3 \$mathrm{Er}_{2}mathrm{O}_{3}\$ films grown on Ge substrates by X-ray photoelectron spectroscopy. Applied Physics A: Materials Science and Processing, 2014, 115, 797-800.	2.3	0
87	Optical Curtain Effect: Extraordinary Optical Transmission Enhanced by Antireflection. Plasmonics, 2013, 8, 1087-1093.	3.4	3
88	Improving working lifetime and efficiency of phosphor doped organic light-emitting diodes. Optics Express, 2013, 21, 17020.	3.4	11
89	Designing a Thin Film Beam Collimator Based on a Metal/dielectric Multilayer Structure. , 2013, , .		0

6

YAN-XIA CUI

#	Article	IF	CITATIONS
91	Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab. Nano Letters, 2012, 12, 1443-1447.	9.1	864
92	Multiband plasmonic absorber based on transverse phase resonances. Optics Express, 2012, 20, 17552.	3.4	22
93	Ultra-broadband microwave metamaterial absorber. Applied Physics Letters, 2012, 100, .	3.3	837
94	Plasmonic Sensors Based on Rayleigh Anomaly. , 2012, , .		2
95	Designing a Thin Film Blackbody Based on Plasmonic Anisotropic metamaterials. , 2012, , .		1
96	Designing a Thin Film Blackbody Based on Plasmonic Anisotropic Metamaterials. , 2012, , .		0
97	Multiband electromagnetic absorbers based on a metal/dielectric multilayer stack. , 2012, , .		1
98	A thin film broadband absorber based on multi-sized nanoantennas. Applied Physics Letters, 2011, 99, .	3.3	250
99	Exciting multiple plasmonic resonances by a double-layered metallic nanostructure. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 2827.	2.1	11
100	Plasmon-Assisted Optical Curtains. Plasmonics, 2010, 5, 369-374.	3.4	4
101	Optical nano-antennas and metamaterials. Materials Today, 2009, 12, 16-24.	14.2	26
102	Transmission enhancement, perfect absorption and field squeezing with nano-antennas and metamaterials. , 2009, , .		0
103	Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna. Optics Letters, 2009, 34, 16.	3.3	69
104	Nanocavity antenna array for enhancing extraordinary optical transmission of light through a metallic nanoslit. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2131.	2.1	11
105	A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves. Optics Express, 2009, 17, 13995.	3.4	19