
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/361782/publications.pdf Version: 2024-02-01

TINC CUO

#	Article	IF	CITATIONS
1	Zein structure and its hidden zearalenone: Effect of zein extraction methods. Food Chemistry, 2022, 374, 131563.	4.2	18
2	A novel high-sensitive indirect competitive chemiluminescence enzyme immunoassay based on monoclonal antibody for tenuazonic acid (TeA) detection. European Food Research and Technology, 2022, 248, 577-587.	1.6	3
3	A High Sensitivity Electrochemical Immunosensor Based on Monoclonal Antibody Coupled Flower-Shaped Nano-ZnO for Detection of Tenuazonic Acid. Agriculture (Switzerland), 2022, 12, 204.	1.4	1
4	Counterfactual-Based Action Evaluation Algorithm in Multi-Agent Reinforcement Learning. Applied Sciences (Switzerland), 2022, 12, 3439.	1.3	3
5	A facile aptasensor based on polydopamine nanospheres for high-sensitivity sensing of T-2 toxin. Analytical Methods, 2021, 13, 2654-2658.	1.3	6
6	A multifunctional near-infrared fluorescent sensing material based on core-shell upconversion nanoparticles@magnetic nanoparticles and molecularly imprinted polymers for detection of deltamethrin. Mikrochimica Acta, 2021, 188, 165.	2.5	5
7	Integrated multi-spectroscopic and molecular modeling techniques to study the formation mechanism of hidden zearalenone in maize. Food Chemistry, 2021, 351, 129286.	4.2	21
8	Dairy Processing Affects the Gut Digestion and Microecology by Changing the Structure and Composition of Milk Fat Globules. Journal of Agricultural and Food Chemistry, 2021, 69, 10194-10205.	2.4	4
9	Fast Fluorescence Titration Quantification of Plasmid DNA with DNA Attractive Magnetic Nanoparticles. Analytical Chemistry, 2021, 93, 12854-12861.	3.2	0
10	Effect of temperature and pH on the conversion between free and hidden zearalenone in zein. Food Chemistry, 2021, 360, 130001.	4.2	10
11	Variants in Homologous Recombination Genes <i>EXO1</i> and <i>RAD51</i> Related with Premature Ovarian Insufficiency. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e3566-e3574.	1.8	21
12	Properties of Pickering emulsion stabilized by food-grade gelatin nanoparticles: influence of the nanoparticles concentration. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111294.	2.5	83
13	Novel pathogenic mutations in minichromosome maintenance complex component 9 (MCM9) responsible for premature ovarian insufficiency. Fertility and Sterility, 2020, 113, 845-852.	0.5	24
14	A simple mesoporous silica nanoparticle-based fluorescence aptasensor for the detection of zearalenone in grain and cereal products. Analytical and Bioanalytical Chemistry, 2020, 412, 5627-5635.	1.9	32
15	Solidâ€phase extraction materials based on molecularly imprinted polymers for recognition of pyrethroids. Journal of Applied Polymer Science, 2020, 137, 48919.	1.3	2
16	A Novel Ratiometric Electrochemical Biosensor Based on a Split Aptamer for the Detection of Dopamine with Logic Gate Operations. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900924.	0.8	18
17	Physical, chemical and biological enhancement in X-ray nanochemistry. Physical Chemistry Chemical Physics, 2019, 21, 15917-15931.	1.3	14
18	Toward Development of Fluorescence-Quenching-Based Biosensors for Drought Stress in Plants. Analytical Chemistry, 2019, 91, 15644-15651.	3.2	7

#	Article	IF	CITATIONS
19	Oxidative DNA damage and multi-organ pathologies in male mice subchronically treated with aflatoxin B1. Ecotoxicology and Environmental Safety, 2019, 186, 109697.	2.9	13
20	Novel FSHR mutations in Han Chinese women with sporadic premature ovarian insufficiency. Molecular and Cellular Endocrinology, 2019, 492, 110446.	1.6	19
21	A novel fluorescence aptasensor based on mesoporous silica nanoparticles for selective and sensitive detection of aflatoxin B1. Analytica Chimica Acta, 2019, 1068, 87-95.	2.6	61
22	Fluorescence Spectroscopic Investigation of Competitive Interactions between Quercetin and Aflatoxin B1 for Binding to Human Serum Albumin. Toxins, 2019, 11, 214.	1.5	24
23	Green pH/magnetic sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: synthesis, characterization and naringin prolonged release. Carbohydrate Polymers, 2019, 209, 51-61.	5.1	98
24	Theoretical Study of X-ray Induced Energy Transfer (XIET) from Nanomaterial Donors to Nanomaterial Acceptors. Journal of Physical Chemistry C, 2018, 122, 18640-18650.	1.5	2
25	Target-induced DNA machine amplification strategy for high sensitive and selective detection of biotoxin. Sensors and Actuators B: Chemical, 2018, 262, 619-624.	4.0	15
26	Identification of Individual Reaction Steps in Complex Radical Reactions Involving Gold Nanoparticles. ChemPhysChem, 2018, 19, 3327-3327.	1.0	0
27	Identification of Individual Reaction Steps in Complex Radical Reactions Involving Gold Nanoparticles. ChemPhysChem, 2018, 19, 3328-3333.	1.0	6
28	A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification. Mikrochimica Acta, 2018, 185, 487.	2.5	32
29	Sealable Spherical Mesoporous Silica Shell Nanoreactors as Fiducial Nanoscale Probes for X-rays. Journal of Physical Chemistry A, 2018, 122, 8686-8692.	1.1	2
30	X-ray-Mediated Release of Molecules and Engineered Proteins from Nanostructure Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 31860-31864.	4.0	5
31	Effects of freezing-thawing pretreatment combined with liquid nitrogen and dilute acid on the gelatinization of collagen. International Journal of Biological Macromolecules, 2018, 118, 435-441.	3.6	9
32	Size-Dependent Deposition, Translocation, and Microglial Activation of Inhaled Silver Nanoparticles in the Rodent Nose and Brain. Environmental Health Perspectives, 2016, 124, 1870-1875.	2.8	46
33	Aerosolized Silver Nanoparticles in the Rat Lung and Pulmonary Responses over Time. Toxicologic Pathology, 2016, 44, 673-686.	0.9	29
34	Concentration-Dependent Association between Weakly Attractive Nanoparticles in Aqueous Solutions. Journal of Physical Chemistry C, 2016, 120, 19830-19836.	1,5	6
35	A double responsive smart upconversion fluorescence sensing material for glycoprotein. Biosensors and Bioelectronics, 2016, 85, 596-602.	5.3	39
36	Electron Paramagnetic Resonance Spectroscopy Investigation of Radical Production by Gold Nanoparticles in Aqueous Solutions Under X-ray Irradiation. Journal of Physical Chemistry A, 2016, 120, 2815-2823.	1.1	37

#	Article	IF	CITATIONS
37	Sub-monolayer silver loss from large gold nanospheres detected by surface plasmon resonance in the sigmoidal region. Journal of Colloid and Interface Science, 2016, 479, 173-181.	5.0	6
38	X-ray-Induced Energy Transfer between Nanomaterials under X-ray Irradiation. Journal of Physical Chemistry C, 2016, 120, 3054-3060.	1.5	22
39	Nanoparticle-Assisted Scanning Focusing X-Ray Therapy with Needle Beam X Rays. Radiation Research, 2016, 185, 87-95.	0.7	3
40	Upconversion fluorescence metal-organic frameworks thermo-sensitive imprinted polymer for enrichment and sensing protein. Biosensors and Bioelectronics, 2016, 79, 341-346.	5.3	108
41	Investigation of magnetic field manipulated electrons produced from laser-driven ultrafast x-ray sources using x-ray emission spectroscopy. Journal Physics D: Applied Physics, 2015, 48, 105202.	1.3	0
42	Encapsulation of multiple large spherical silica nanoparticles in hollow spherical silica shells. Journal of Colloid and Interface Science, 2015, 445, 112-118.	5.0	5
43	Influence of Particle Size on Persistence and Clearance of Aerosolized Silver Nanoparticles in the Rat Lung. Toxicological Sciences, 2015, 144, 366-381.	1.4	83
44	Molecularly imprinted upconversion nanoparticles for highly selective and sensitive sensing of Cytochrome c. Biosensors and Bioelectronics, 2015, 74, 498-503.	5.3	72
45	High selectivity and sensitivity fluorescence sensing of melamine based on the combination of a fluorescent chemosensor and molecularly imprinted polymers. RSC Advances, 2015, 5, 94084-94090.	1.7	6
46	Multiplication Algorithm for Combined Physical and Chemical Enhancement of X-ray Effect by Nanomaterials. Journal of Physical Chemistry C, 2015, 119, 19513-19519.	1.5	12
47	Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition. Nanotoxicology, 2015, 9, 591-602.	1.6	48
48	Determination of Absolute Quantum Efficiency of X-ray Nano Phosphors by Thin Film Photovoltaic Cells. Analytical Chemistry, 2014, 86, 10492-10496.	3.2	5
49	Average Physical Enhancement by Nanomaterials under X-ray Irradiation. Journal of Physical Chemistry C, 2014, 118, 30221-30228.	1.5	24
50	X-ray triggered release of doxorubicin from nanoparticle drug carriers for cancer therapy. Chemical Communications, 2013, 49, 2545.	2.2	62
51	Aerosolization System for Experimental Inhalation Studies of Carbon-Based Nanomaterials. Aerosol Science and Technology, 2012, 46, 94-107.	1.5	5
52	An Example of X-ray Nanochemistry: SERS Investigation of Polymerization Enhanced by Nanostructures under X-ray Irradiation. Journal of Physical Chemistry Letters, 2012, 3, 3271-3275.	2.1	30
53	Chemical Enhancement by Nanomaterials under X-ray Irradiation. Journal of the American Chemical Society, 2012, 134, 1950-1953.	6.6	112
54	Enhanced single strand breaks of supercoiled DNA in a matrix of gold nanotubes under X-ray irradiation. Journal of Colloid and Interface Science, 2012, 378, 70-76.	5.0	11

TING GUO

#	Article	IF	CITATIONS
55	Synthesis and electric properties of dicobalt silicide nanobelts. Chemical Communications, 2011, 47, 1255-1257.	2.2	15
56	Timeâ€Resolved Annular Dark Field Imaging of Catalyst Nanoparticles. ChemPhysChem, 2010, 11, 2088-2090.	1.0	8
57	Probing Site Activity of Monodisperse Pt Nanoparticle Catalysts Using Steam Reforming of Methane. Journal of Physical Chemistry Letters, 2010, 1, 254-259.	2.1	17
58	Recognition of melting of nanoparticle catalysts with cubically shaped Co3O4 nanoparticles. Journal of Colloid and Interface Science, 2008, 321, 251-255.	5.0	6
59	Carbon Dioxide Reforming of Methane by Ni/Co Nanoparticle Catalysts Immobilized on Single-Walled Carbon Nanotubes. Energy & Fuels, 2008, 22, 2183-2187.	2.5	21
60	Nanowires for solar energy and hydrogen production. , 2007, , .		0
61	Investigations of Laser Evaporation in Ambient Pressure Helium with Ultrafast Hard X-ray Pulses. Journal of Physical Chemistry C, 2007, 111, 4643-4647.	1.5	5
62	Nanoscale Energy Deposition by X-ray Absorbing Nanostructures. Journal of Physical Chemistry B, 2007, 111, 11622-11625.	1.2	207
63	Synthesis of Tubular Gold and Silver Nanoshells Using Silica Nanowire Core Templates. Langmuir, 2006, 22, 6367-6374.	1.6	46
64	Silica Nanocoils. Journal of Physical Chemistry B, 2006, 110, 8296-8301.	1.2	23
65	Surface modification of gold nanotubules via microwave radiation, sonication and chemical etching. Chemical Physics Letters, 2006, 432, 195-199.	1.2	6
66	Synthesis and self-assembled ring structures of Ni nanocrystals. Journal of Colloid and Interface Science, 2006, 293, 430-436.	5.0	20
67	Determination of charge state of tungsten during ultrafast hard x-ray generation. , 2006, , 53-56.		0
68	Ultrafast selected energy x-ray absorption spectroscopy investigations of Ni and Zn species. Journal of Chemical Physics, 2005, 122, 244710.	1.2	6
69	Coherent anti-Stokes Raman scattering microscopy with spectrally tailored ultrafast pulses. Review of Scientific Instruments, 2005, 76, 043108.	0.6	12
70	Laser-driven hard-x-ray generation based on ultrafast selected energy x-ray absorption spectroscopy measurements of Ni compounds. Physical Review E, 2005, 71, 025401.	0.8	11
71	Enhanced relaxation of nanoparticle-bound supercoiled DNA in X-ray radiation. Chemical Communications, 2005, , 3192.	2.2	60
72	Silicon-based nanowires from silicon wafers catalyzed by cobalt nanoparticles in a hydrogen environment. Chemical Communications, 2005, , 2274.	2.2	27

#	Article	IF	CITATIONS
73	Atomic Tungsten for Ultrafast Hard X-ray Generation. Journal of Physical Chemistry A, 2005, 109, 4216-4220.	1.1	13
74	Determination of CoSi2Self-Aligned Nanostructures with Grazing Incidence X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 4118-4122.	1.2	7
75	Crystal Structures, Raman Spectroscopy, and Magnetic Properties of Ba7.5Al13Si29and Eu0.27Ba7.22Al13Si29. Inorganic Chemistry, 2005, 44, 9185-9191.	1.9	32
76	Investigation of Co nanoparticles with EXAFS and XANES. Chemical Physics Letters, 2004, 400, 122-127.	1.2	69
77	Growth of Self-Aligned Crystalline Cobalt Silicide Nanostructures from Co Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 6901-6904.	1.2	19
78	Alkanethiol-Induced Structural Rearrangements in Silicaâ^'Gold Coreâ^'Shell-type Nanoparticle Clusters:Â An Opportunity for Chemical Sensor Engineering. Langmuir, 2004, 20, 5553-5558.	1.6	68
79	Ultrafast selected-energy x-ray absorption spectroscopy (USEXAS) with a laser-driven x-ray source. , 2004, 5340, 113.		1
80	Surface Segregation in Ni/Co Bimetallic Nanoparticles Produced in Single-Walled Carbon Nanotube Synthesis. Journal of Physical Chemistry B, 2002, 106, 5833-5839.	1.2	31
81	Compact 50-Hz terawatt Ti:sapphire laser for x-ray and nonlinear optical spectroscopy. Applied Optics, 2002, 41, 5148.	2.1	18
82	<title>Ultrafast x-ray absorption spectroscopy using laser-driven electron x-ray sources
(LEXS)</title> . , 2001, , .		1
83	Picosecond–milliångström lattice dynamics measured by ultrafast X-ray diffraction. Nature, 1999, 398, 310-312.	13.7	531
84	Self-Assembly of Tubular Fullerenes. The Journal of Physical Chemistry, 1995, 99, 10694-10697.	2.9	499
85	Electronic Structure of Sc@C60: An ab Initio Theoretical Study. The Journal of Physical Chemistry, 1994, 98, 7745-7747.	2.9	24
86	Fullerene doped glasses. Applied Physics Letters, 1994, 65, 2522-2524.	1.5	14
87	Ab initio theoretical predictions of C28, C28H4, C28F4, (Ti@C28)H4, and M@C28 (M=Mg, Al, Si, S, Ca, Sc,) Tj E	TQq110. 1.2	784314 rgBT
88	Ab initio calculations of tetrahedral hydrogenated buckminsterfullerene. Chemical Physics Letters, 1992, 191, 527-532.	1.2	46
89	Fullerenes with metals inside. The Journal of Physical Chemistry, 1991, 95, 7564-7568.	2.9	1,248
90	Doping bucky: formation and properties of boron-doped buckminsterfullerene. The Journal of Physical Chemistry, 1991, 95, 4948-4950.	2.9	398