Jiaxi Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3617057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and application of multi-wavelength-regulated multi-state photoswitchable fluorescent polymer nanoparticles. Dyes and Pigments, 2022, 197, 109919.	3.7	14
2	Slippery Passive Radiative Cooling Supramolecular Siloxane Coatings. ACS Applied Materials & Interfaces, 2022, 14, 4571-4578.	8.0	21
3	Growing Strategy for Postmodifying Cross-Linked Polymers' Bulky Size, Shape, and Mechanical Properties. ACS Applied Materials & Interfaces, 2022, 14, 8473-8481.	8.0	11
4	Programming Hydrogels with Complex Transient Behaviors via Autocatalytic Cascade Reactions. ACS Applied Materials & Interfaces, 2022, 14, 20073-20082.	8.0	5
5	Aptamer functionalization and high-contrast reversible dual-color photoswitching fluorescence of polymeric nanoparticles for latent fingerprints imaging. Sensors and Actuators B: Chemical, 2022, 367, 132049.	7.8	9
6	Dynamic siloxane materials: From molecular engineering to emerging applications. Chemical Engineering Journal, 2021, 405, 127023.	12.7	69
7	Polymeric Microparticles Generated via Confinementâ€Free Fluid Instability. Advanced Materials, 2021, 33, e2007154.	21.0	7
8	Reversibly Photoswitchable Tristate Fluorescence within a Single Polymeric Nanoparticle. Advanced Optical Materials, 2021, 9, 2101227.	7.3	30
9	Dual photochromics-contained photoswitchable multistate fluorescent polymers for advanced optical data storage, encryption, and photowritable pattern. Chemical Engineering Journal, 2021, 425, 131557.	12.7	56
10	Bio-inspired semi-infused adaptive surface with reconfigurable topography for on-demand droplet manipulation. Materials Chemistry Frontiers, 2021, 5, 5382-5389.	5.9	1
11	Folding fluorescent probes for self-reporting transesterification in dynamic polymer networks. Materials Horizons, 2021, 8, 1481-1487.	12.2	10
12	Damage restoration in rigid materials <i>via</i> a keloid-inspired growth process. Journal of Materials Chemistry A, 2021, 10, 174-179.	10.3	9
13	Single-dye-doped fluorescent nanoprobe enables self-referenced ratiometric imaging of hypochlorous acid in lysosomes. Sensors and Actuators B: Chemical, 2020, 304, 127299.	7.8	34
14	Selfâ€Hydrophobization in a Dynamic Hydrogel for Creating Nonspecific Repeatable Underwater Adhesion. Advanced Functional Materials, 2020, 30, 1907064.	14.9	159
15	Macroscopic Selfâ€Evolution of Dynamic Hydrogels to Create Hollow Interiors. Angewandte Chemie, 2020, 132, 5660-5664.	2.0	3
16	Macroscopic Selfâ€Evolution of Dynamic Hydrogels to Create Hollow Interiors. Angewandte Chemie - International Edition, 2020, 59, 5611-5615.	13.8	14
17	Switchable Cavitation: Switchable Cavitation in Silicone Coatings for Energy‣aving Cooling and Heating (Adv. Mater. 29/2020). Advanced Materials, 2020, 32, 2070215.	21.0	8
18	Selfâ€Healable and Recyclable Tactile Force Sensors with Postâ€Tunable Sensitivity. Advanced Functional Materials, 2020, 30, 2003533.	14.9	23

#	Article	IF	CITATIONS
19	When Ultimate Adhesive Mechanism Meets Ultimate Antiâ€Fouling Surfaces—Polydopamine Versus SLIPS: Which One Prevails?. Advanced Materials Interfaces, 2020, 7, 2000876.	3.7	20
20	A rational design of a cancer-specific and lysosome-targeted fluorescence nanoprobe for glutathione imaging in living cells. Materials Advances, 2020, 1, 1739-1744.	5.4	14
21	Droplets Self-Born in the Dynamic Polymer for Generating Functional Coatings. ACS Applied Materials & Interfaces, 2020, 12, 39657-39664.	8.0	5
22	Switchable Cavitation in Silicone Coatings for Energyâ€Saving Cooling and Heating. Advanced Materials, 2020, 32, e2000870.	21.0	132
23	Photoinduced Strainâ€Assisted Synthesis of a Stiffâ€Stilbene Polymer by Ringâ€Opening Metathesis Polymerization. Chemistry - A European Journal, 2020, 26, 14828-14832.	3.3	7
24	Physical entanglement hydrogels: ultrahigh water content but good toughness and stretchability. Polymer Chemistry, 2020, 11, 2339-2345.	3.9	24
25	Perylene diimide-based supramolecular polymer with temperature-sensitive ratiometric fluorescence responsiveness in solution and gels. Materials Advances, 2020, 1, 1330-1336.	5.4	5
26	Light-regulated growth from dynamic swollen substrates for making rough surfaces. Nature Communications, 2020, 11, 963.	12.8	36
27	Doubleâ€Hydrophobicâ€Coating through Quenching for Hydrogels with Strong Resistance to Both Drying and Swelling. Advanced Science, 2020, 7, 1903145.	11.2	54
28	Multifunctional poly(disulfide) hydrogels with extremely fast self-healing ability and degradability. Chemical Engineering Journal, 2020, 394, 124941.	12.7	72
29	Thermomagneto-Responsive Smart Biocatalysts for Malonyl-Coenzyme A Synthesis. ACS Applied Materials & Interfaces, 2020, 12, 20982-20990.	8.0	19
30	Goosebumpsâ€Inspired Microgel Patterns with Switchable Adhesion and Friction. Small, 2019, 15, 1902376.	10.0	17
31	Surface charge printing for programmed droplet transport. Nature Materials, 2019, 18, 936-941.	27.5	401
32	Omni‣iquid Droplet Manipulation Platform. Advanced Materials Interfaces, 2019, 6, 1900653.	3.7	33
33	Nonequilibrium Transesterification for Programming a Material's Stiffening. ACS Applied Polymer Materials, 2019, 1, 3227-3232.	4.4	10
34	Multistimuli Responsive Liquidâ€Release in Dynamic Polymer Coatings for Controlling Surface Slipperiness and Optical Performance. Advanced Materials Interfaces, 2019, 6, 1901028.	3.7	13
35	Photoswitchable ultrahigh-brightness red fluorescent polymeric nanoparticles for information encryption, anti-counterfeiting and bioimaging. Journal of Materials Chemistry C, 2019, 7, 11515-11521.	5.5	57
36	Rational design of ratiometric and lysosome-targetable AIE dots for imaging endogenous HClO in live cells. Materials Chemistry Frontiers, 2019, 3, 203-208.	5.9	29

#	Article	IF	CITATIONS
37	Conductive Tough Hydrogels with a Staggered Ion-Coordinating Structure for High Self-Recovery Rate. ACS Applied Materials & Interfaces, 2019, 11, 24598-24608.	8.0	55
38	Enantiomer-selective magnetization of conglomerates for quantitative chiral separation. Nature Communications, 2019, 10, 1964.	12.8	38
39	Anisotropic tough multilayer hydrogels with programmable orientation. Materials Horizons, 2019, 6, 1504-1511.	12.2	106
40	Selective ratiometric fluorescence detection of hypochlorite by using aggregation-induced emission dots. Analytical and Bioanalytical Chemistry, 2019, 411, 1979-1988.	3.7	17
41	Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic–hydrophilic copolymers. Chemical Engineering Journal, 2019, 362, 325-338.	12.7	67
42	Thermo-responsive recoverable polymeric inhibitors for the resolution of racemic amino acids. Chemical Communications, 2018, 54, 2785-2787.	4.1	8
43	Phototriggered Growth and Detachment of Polymer Brushes with Wavelength Selectivity. ACS Macro Letters, 2018, 7, 239-243.	4.8	19
44	Universal, Surfactantâ€Free Preparation of Hydrogel Beads on Superamphiphobic and Slippery Surfaces. Advanced Materials Interfaces, 2018, 5, 1701536.	3.7	12
45	Highâ€Performance pHâ€&witchable Supramolecular Thermosets via Cation–π Interactions. Advanced Materials, 2018, 30, 1704234.	21.0	105
46	Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12950-12955.	7.1	91
47	From a Molecular Toolbox to a Toolbox for Photoswitchable Fluorescent Polymeric Nanoparticles. Advanced Functional Materials, 2018, 28, 1804759.	14.9	56
48	Hydrogel bowls for cleaning oil spills on water. Water Research, 2018, 145, 640-649.	11.3	28
49	Selfâ€Reporting Inhibitors: A Single Crystallization Process To Obtain Two Optically Pure Enantiomers. Angewandte Chemie, 2018, 130, 8252-8256.	2.0	8
50	Selfâ€Reporting Inhibitors: A Single Crystallization Process To Obtain Two Optically Pure Enantiomers. Angewandte Chemie - International Edition, 2018, 57, 8120-8124.	13.8	29
51	Dynamically Actuated Liquidâ€Infused Poroelastic Film with Precise Control over Droplet Dynamics. Advanced Functional Materials, 2018, 28, 1802632.	14.9	46
52	Switchable single fluorescent polymeric nanoparticles for stable white-light generation. Journal of Materials Chemistry C, 2018, 6, 9897-9902.	5.5	21
53	Earthwormâ€Inspired Rough Polymer Coatings with Selfâ€Replenishing Lubrication for Adaptive Frictionâ€Reduction and Antifouling Surfaces. Advanced Materials, 2018, 30, e1802141.	21.0	133
54	Development of "Liquid-like―Copolymer Nanocoatings for Reactive Oil-Repellent Surface. ACS Nano, 2017, 11, 2248-2256.	14.6	130

#	Article	IF	CITATIONS
55	Thermoresponsive Mobile Interfaces with Switchable Wettability, Optical Properties, and Penetrability. ACS Applied Materials & amp; Interfaces, 2017, 9, 35483-35491.	8.0	33
56	Selfâ€Forming Interlocking Interfaces on the Immiscible Polymer Bilayers via Gelationâ€Mediated Phase Separation. Macromolecular Rapid Communications, 2017, 38, 1700206.	3.9	5
57	Optically active helical vinylbiphenyl polymers with reversible thermally induced stereomutation. Polymer Chemistry, 2016, 7, 3134-3144.	3.9	15
58	Controlling the Localization of Liquid Droplets in Polymer Matrices by Evaporative Lithography. Angewandte Chemie, 2016, 128, 10839-10843.	2.0	5
59	Controlling the Localization of Liquid Droplets in Polymer Matrices by Evaporative Lithography. Angewandte Chemie - International Edition, 2016, 55, 10681-10685.	13.8	33
60	Extremely Stretchable and Fast Selfâ€Healing Hydrogels. Advanced Materials, 2016, 28, 4678-4683.	21.0	394
61	Four and a Half LIM Domains 1b (Fhl1b) Is Essential for Regulating the Liver versus Pancreas Fate Decision and for β-Cell Regeneration. PLoS Genetics, 2016, 12, e1005831.	3.5	11
62	Click functionalization of phenyl-capped bithiophene on azide-terminated self-assembled monolayers. Applied Surface Science, 2015, 355, 213-217.	6.1	2
63	Dynamic polymer systems with self-regulated secretion for the control of surface properties andÂmaterial healing. Nature Materials, 2015, 14, 790-795.	27.5	237
64	Dopamineâ€Based Coatings and Hydrogels: Toward Substitutionâ€Related Structure–Property Relationships. Macromolecular Chemistry and Physics, 2014, 215, 2403-2413.	2.2	36
65	Photo-induced helix–helix transition of a polystyrene derivative. Polymer Chemistry, 2014, 5, 718-721.	3.9	17
66	2â€Ureidoâ€4â€Pyrimidoneâ€Based Hydrogels with Multiple Responses. ChemPhysChem, 2013, 14, 2932-2938.	2.1	25
67	Phototunable Surface Interactions. Langmuir, 2013, 29, 12138-12144.	3.5	15
68	Light-Triggered Cross-Linking of Alginates with Caged Ca2+. Biomacromolecules, 2013, 14, 1251-1256.	5.4	38
69	Analysis of Responsive Polymer Films Using Surface Acoustic Waves. Langmuir, 2013, 29, 6582-6587.	3.5	7
70	Lightâ€Triggered Multifunctionality at Surfaces Mediated by Photolabile Protecting Groups. Macromolecular Rapid Communications, 2013, 34, 310-329.	3.9	69
71	Antibacterial Strategies from the Sea: Polymerâ€Bound Clâ€Catechols for Prevention of Biofilm Formation. Advanced Materials, 2013, 25, 529-533.	21.0	92
72	Multivalent H-bonds for self-healing hydrogels. Chemical Communications, 2012, 48, 9302.	4.1	308

#	Article	IF	CITATIONS
73	Phototunable Response in Caged Polymer Brushes. Macromolecules, 2012, 45, 3213-3220.	4.8	43
74	Hydrogen bonding of helical vinyl polymers containing alanine moieties: a stabilized interaction of helical conformation sensitive to solvents and pH. Polymer Chemistry, 2012, 3, 668.	3.9	31
75	New Photolabile BAPTA-Based Ca ²⁺ Cages with Improved Photorelease. Journal of the American Chemical Society, 2012, 134, 7733-7740.	13.7	39
76	Bioinspired Actuated Adhesive Patterns of Liquid Crystalline Elastomers. Advanced Materials, 2012, 24, 4601-4604.	21.0	110
77	Bioinspired Underwater Bonding and Debonding on Demand. Angewandte Chemie - International Edition, 2012, 51, 4332-4335.	13.8	171
78	Polymer Brushes with Phototriggered and Phototunable Swelling and pH Response. Macromolecular Rapid Communications, 2011, 32, 1699-1703.	3.9	42
79	Study on the Gel to Crystal Transition of a Novel Sugar-Appended Gelator. Langmuir, 2010, 26, 97-103.	3.5	54
80	Tuning the Helicity of Self-Assembled Structure of a Sugar-Based Organogelator by the Proper Choice of Cooling Rate. Langmuir, 2010, 26, 3615-3622.	3.5	94
81	Steric Interaction between Flexible Main Chain and Nonmesogenic Cyclic Pendants Leading to Thermotropic Liquid Crystalline Property. Macromolecules, 2010, 43, 8942-8949.	4.8	15
82	Near-infrared electrochromic and chiroptical switching polymers: synthesis and characterization of helical poly(N-propargylamides) carrying anthraquinone imide moieties in side chains. Journal of Materials Chemistry, 2010, 20, 5915.	6.7	31
83	Alkoxy Tail Length Dependence of Gelation Ability and Supramolecular Chirality of Sugar-Appended Organogelators. Langmuir, 2010, 26, 15508-15515.	3.5	41
84	Synthesis and characterization of optically active helical vinyl polymers via free radical polymerization. Journal of Polymer Science Part A, 2009, 47, 2408-2421.	2.3	37
85	Long-Range Chirality Transfer in Free Radical Polymerization of Bulky Vinyl Monomers Containing Laterally Attached <i>p</i> -Terphenyl Groups. Macromolecules, 2009, 42, 7678-7688.	4.8	53
86	Solvent-tuned multiple self-assembly of a new sugar-appended gelator. Journal of Colloid and Interface Science, 2008, 326, 267-274.	9.4	41
87	Synthesis and Characterization of Branched Mesogen-Jacketed Liquid Crystal Polymers Based on 2,5-Bis[(4â€ [~] -methoxyphenyl)oxycarbonyl]styrene and 4-Chloromethylstyrene. Macromolecules, 2008, 41, 1264-1272.	4.8	13
88	Synthesis and Chiroptical Properties of Vinyl Polymers Containing Laterally Attached 4,4′′-Digalactosyloxy- <i>p</i> -terphenyl Side Groups. Macromolecules, 2008, 41, 5245-5254.	4.8	38
89	Oddâ^'Even Effect in Free Radical Polymerization of Optically Active 2,5-Bis[(4â€ [~] -alkoxycarbonyl)- phenyl]styrene. Macromolecules, 2008, 41, 1594-1597.	4.8	56
90	Thermotropic and Chiroptical Properties of Poly{(+)-2,5-bis[4-((<i>S</i>)-2-methylbutoxy)phenyl]styrene} and Its Random Copolymer with Polystyrene. Macromolecules, 2007, 40, 8233-8243.	4.8	34

#	Article	IF	CITATIONS
91	Synthesis and characterization of a thermotropic liquid-crystalline poly[2,5-bis(4′-alkoxycarbonylphenyl) styrene]. Journal of Polymer Science Part A, 2007, 45, 830-847.	2.3	50
92	Anisotropic Mechano-Adaptive Cavitation in Elastomer for Unclonable Covert–Overt Anti-counterfeiting. Journal of Materials Chemistry C, 0, , .	5.5	7