Neil Osheroff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3616845/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of Quinolone Action and Resistance. Biochemistry, 2014, 53, 1565-1574.	1.2	889
2	Topoisomerase Poisons: Harnessing the Dark Side of Enzyme Mechanism. Journal of Biological Chemistry, 1995, 270, 21429-21432.	1.6	450
3	The DNA cleavage reaction of topoisomerase II: wolf in sheep's clothing. Nucleic Acids Research, 2009, 37, 738-748.	6.5	401
4	DNA topoisomerase II, genotoxicity, and cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2007, 623, 83-97.	0.4	334
5	Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Progress in Molecular Biology and Translational Science, 2000, 64, 221-253.	1.9	304
6	DNA Topoisomerase II in Therapy-Related Acute Promyelocytic Leukemia. New England Journal of Medicine, 2005, 352, 1529-1538.	13.9	262
7	Catalytic function of DNA topoisomerase II. BioEssays, 1991, 13, 269-275.	1.2	247
8	Merbarone Inhibits the Catalytic Activity of Human Topoisomerase IIα by Blocking DNA Cleavage. Journal of Biological Chemistry, 1998, 273, 17643-17650.	1.6	237
9	Effect of antineoplastic agents on the DNA cleavage/religation reaction of eukaryotic topoisomerase II: inhibition of DNA religation by etoposide. Biochemistry, 1989, 28, 6157-6160.	1.2	230
10	Topoisomerase II and leukemia. Annals of the New York Academy of Sciences, 2014, 1310, 98-110.	1.8	163
11	Type II Topoisomerases as Targets for Quinolone Antibacterials Turning Dr. Jekyll into Mr. Hyde. Current Pharmaceutical Design, 2001, 7, 337-353.	0.9	161
12	Effects of antineoplastic drugs on the post-strand-passage DNA cleavage/religation equilibrium of topoisomerase II. Biochemistry, 1991, 30, 1807-1813.	1.2	155
13	Bioflavonoids as Poisons of Human Topoisomerase IlÎ \pm and IlÎ 2 . Biochemistry, 2007, 46, 6097-6108.	1.2	153
14	Structure of a topoisomerase II–DNA–nucleotide complex reveals a new control mechanism for ATPase activity. Nature Structural and Molecular Biology, 2012, 19, 1147-1154.	3.6	147
15	Calcium-promoted DNA cleavage by eukaryotic topoisomerase II: trapping the covalent enzyme-DNA complex in an active form. Biochemistry, 1987, 26, 4303-4309.	1.2	145
16	A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature, 2010, 465, 641-644.	13.7	140
17	Human Topoisomerase IIα Rapidly Relaxes Positively Supercoiled DNA. Journal of Biological Chemistry, 2005, 280, 39337-39345.	1.6	136
18	Double-stranded DNA cleavage/religation reaction of eukaryotic topoisomerase II: evidence for a nicked DNA intermediate. Biochemistry, 1989, 28, 6229-6236.	1.2	134

#	Article	IF	CITATIONS
19	Spontaneous DNA Lesions Poison Human Topoisomerase IIα and Stimulate Cleavage Proximal to Leukemic 11q23 Chromosomal Breakpointsâ€. Biochemistry, 1997, 36, 5934-5939.	1.2	134
20	Topoisomerase II·Etoposide Interactions Direct the Formation of Drug-induced Enzyme-DNA Cleavage Complexes. Journal of Biological Chemistry, 1996, 271, 29238-29244.	1.6	133
21	Topoisomerase II and the etiology of chromosomal translocations. DNA Repair, 2006, 5, 1093-1108.	1.3	130
22	Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Research, 2013, 41, 4628-4639.	6.5	130
23	A Two-drug Model for Etoposide Action against Human Topoisomerase IIα. Journal of Biological Chemistry, 2003, 278, 7406-7412.	1.6	125
24	Dietary Polyphenols as Topoisomerase II Poisons: B Ring and C Ring Substituents Determine the Mechanism of Enzyme-Mediated DNA Cleavage Enhancement. Chemical Research in Toxicology, 2008, 21, 1253-1260.	1.7	99
25	DNA topology and topoisomerases. Biochemistry and Molecular Biology Education, 2009, 37, 2-10.	0.5	99
26	Mechanistic and Structural Basis for the Actions of the Antibacterial Gepotidacin against <i>Staphylococcus aureus</i> Gyrase. ACS Infectious Diseases, 2019, 5, 570-581.	1.8	99
27	1,4-Benzoquinone Is a Topoisomerase II Poisonâ€. Biochemistry, 2004, 43, 7563-7574.	1.2	98
28	Sensitivity of human type II topoisomerases to DNA damage: stimulation of enzyme-mediated DNA cleavage by abasic, oxidized and alkylated lesions. Nucleic Acids Research, 2000, 28, 1947-1954.	6.5	91
29	DNA Topoisomerases as Targets for the Anticancer Drug TAS-103:Â DNA Interactions and Topoisomerase Catalytic Inhibitionâ€. Biochemistry, 1999, 38, 15580-15586.	1.2	89
30	(–)-Epigallocatechin Gallate, A Major Constituent of Green Tea, Poisons Human Type II Topoisomerases. Chemical Research in Toxicology, 2008, 21, 936-943.	1.7	87
31	Role of divalent cation in topoisomerase II mediated reactions. Biochemistry, 1987, 26, 6402-6406.	1.2	85
32	A Novel Mechanism of Cell Killing by Anti-topoisomerase II Bisdioxopiperazines. Journal of Biological Chemistry, 2000, 275, 2137-2146.	1.6	83
33	Etoposide Metabolites Enhance DNA Topoisomerase II Cleavage near Leukemia-AssociatedMLLTranslocation Breakpointsâ€. Biochemistry, 2001, 40, 1159-1170.	1.2	79
34	Drug Interactions with <i>Bacillus anthracis</i> Topoisomerase IV: Biochemical Basis for Quinolone Action and Resistance. Biochemistry, 2012, 51, 370-381.	1.2	79
35	A Yeast Type II Topoisomerase Selected for Resistance to Quinolones. Journal of Biological Chemistry, 1995, 270, 1913-1920.	1.6	78
36	DNA Topoisomerase II as the Target for the Anticancer Drug TOP-53: Mechanistic Basis for Drug Actionâ€. Biochemistry, 2001, 40, 712-718.	1.2	78

#	Article	IF	CITATIONS
37	Molecular analysis of t(15;17) genomic breakpoints in secondary acute promyelocytic leukemia arising after treatment of multiple sclerosis. Blood, 2008, 112, 3383-3390.	0.6	74
38	Fluoroquinolone interactions with <i>Mycobacterium tuberculosis</i> gyrase: Enhancing drug activity against wild-type and resistant gyrase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E839-46.	3.3	73
39	Cobalt Enhances DNA Cleavage Mediated by Human Topoisomerase IIαin Vitroand in Cultured Cellsâ€. Biochemistry, 2004, 43, 728-735.	1.2	72
40	Activities of gyrase and topoisomerase IV on positively supercoiled DNA. Nucleic Acids Research, 2017, 45, 9611-9624.	6.5	72
41	The response of eukaryotic topoisomerases to DNA damage. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1400, 223-232.	2.4	70
42	DNA Topoisomerases as Targets for the Anticancer Drug TAS-103:Â Primary Cellular Target and DNA Cleavage Enhancementâ€. Biochemistry, 1999, 38, 15573-15579.	1.2	67
43	The Bis(naphthalimide) DMP-840 Causes Cytotoxicity by Its Action against Eukaryotic Topoisomerase Ilâ€. Biochemistry, 1998, 37, 3078-3085.	1.2	66
44	Oxidative Transformation of Demethoxy- and Bisdemethoxycurcumin: Products, Mechanism of Formation, and Poisoning of Human Topoisomerase Ilα. Chemical Research in Toxicology, 2015, 28, 989-996.	1.7	66
45	From music to macromolecules: Using rich media/podcast lecture recordings to enhance the preclinical educational experience. Medical Teacher, 2008, 30, 630-632.	1.0	65
46	Binding of Etoposide to Topoisomerase II in the Absence of DNA:Â Decreased Affinity as a Mechanism of Drug Resistanceâ€. Biochemistry, 1999, 38, 3457-3461.	1.2	63
47	N-Acetyl-p-benzoquinone Imine, the Toxic Metabolite of Acetaminophen, Is a Topoisomerase II Poisonâ€. Biochemistry, 2004, 43, 3731-3739.	1.2	63
48	Evidence for direct involvement of epirubicin in the formation of chromosomal translocations in t(15;17) therapy-related acute promyelocytic leukemia. Blood, 2010, 115, 326-330.	0.6	63
49	Topoisomerase IV Catalysis and the Mechanism of Quinolone Action. Journal of Biological Chemistry, 1998, 273, 17879-17885.	1.6	61
50	The use of divalent metal ions by type II topoisomerases. Metallomics, 2010, 2, 450.	1.0	61
51	Oxidative Metabolites of Curcumin Poison Human Type II Topoisomerases. Biochemistry, 2013, 52, 221-227.	1.2	61
52	Topoisomerase Ilâ^'Drug Interaction Domains:  Identification of Substituents on Etoposide That Interact with the Enzyme. Biochemistry, 2007, 46, 8217-8225.	1.2	59
53	Bimodal Recognition of DNA Geometry by Human Topoisomerase IIα: Preferential Relaxation of Positively Supercoiled DNA Requires Elements in the C-Terminal Domain. Biochemistry, 2008, 47, 13169-13178.	1.2	59
54	Overcoming Target-Mediated Quinolone Resistance in Topoisomerase IV by Introducing Metal-Ion-Independent Drug–Enzyme Interactions. ACS Chemical Biology, 2013, 8, 2660-2668.	1.6	59

#	Article	IF	CITATIONS
55	Polychlorinated Biphenyl Quinone Metabolites Poison Human Topoisomerase Ilα: Altering Enzyme Function by Blocking theN-Terminal Protein Gateâ€. Biochemistry, 2006, 45, 10140-10152.	1.2	57
56	Interactions between the Etoposide Derivative F14512 and Human Type II Topoisomerases: Implications for the C4 Spermine Moiety in Promoting Enzyme-Mediated DNA Cleavage. Biochemistry, 2011, 50, 3240-3249.	1.2	57
57	Direct measurement of DNA bending by type IIA topoisomerases: implications for non-equilibrium topology simplification. Nucleic Acids Research, 2011, 39, 5729-5743.	6.5	57
58	DNA cleavage and opening reactions of human topoisomerase IIα are regulated <i>via</i> Mg ²⁺ -mediated dynamic bending of gate-DNA. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2925-2930.	3.3	56
59	MLL-SEPTIN6 fusion recurs in novel translocation of chromosomes 3, X, and 11 in infant acute myelomonocytic leukaemia and in t(X;11) in infant acute myeloid leukaemia, and MLL genomic breakpoint in complex MLL-SEPTIN6 rearrangement is a DNA topoisomerase II cleavage site. Oncogene, 2002, 21, 4706-4714.	2.6	54
60	Quinone-Induced Enhancement of DNA Cleavage by Human Topoisomerase IIα: Adduction of Cysteine Residues 392 and 405â€. Biochemistry, 2007, 46, 2856-2864.	1.2	54
61	The Efficacy of Topoisomerase II-Targeted Anticancer Agents Reflects the Persistence of Drug-Induced Cleavage Complexes in Cells. Biochemistry, 2008, 47, 11900-11908.	1.2	53
62	Reciprocal DNA topoisomerase II cleavage events at 5′-TATTA-3′ sequences in MLL and AF-9 create homologous single-stranded overhangs that anneal to form der(11) and der(9) genomic breakpoint junctions in treatment-related AML without further processing. Oncogene, 2003, 22, 8448-8459.	2.6	52
63	Phytochemicals as anticancer and chemopreventive topoisomerase II poisons. Phytochemistry Reviews, 2014, 13, 19-35.	3.1	52
64	A Mutation in Yeast TOP2 Homologous to a Quinolone-resistant Mutation in Bacteria. Journal of Biological Chemistry, 1995, 270, 20359-20364.	1.6	51
65	Effects of Benzene Metabolites on DNA Cleavage Mediated by Human Topoisomerase IIα: 1,4-Hydroquinone Is a Topoisomerase II Poison. Chemical Research in Toxicology, 2005, 18, 761-770.	1.7	51
66	Genome-wide TOP2A DNA cleavage is biased toward translocated and highly transcribed loci. Genome Research, 2017, 27, 1238-1249.	2.4	49
67	Human topoisomerase IIÂ uses a two-metal-ion mechanism for DNA cleavage. Nucleic Acids Research, 2008, 36, 4883-4893.	6.5	47
68	Impact of the C-Terminal Domain of Topoisomerase IIα on the DNA Cleavage Activity of the Human Enzyme. Biochemistry, 2005, 44, 11546-11554.	1.2	44
69	Etoposide Quinone Is a Redox-Dependent Topoisomerase II Poison. Biochemistry, 2011, 50, 5660-5667.	1.2	43
70	Quinolones Share a Common Interaction Domain on Topoisomerase II with Other DNA Cleavage-Enhancing Antineoplastic Drugs. Biochemistry, 1997, 36, 2919-2924.	1.2	42
71	Communication between the ATPase and Cleavage/Religation Domains of Human Topoisomerase Ilα. Journal of Biological Chemistry, 2000, 275, 13041-13048.	1.6	41
72	Substituents on Etoposide That Interact with Human Topoisomerase Ilα in the Binary Enzymeâ^'Drug Complex: Contributions to Etoposide Binding and Activity. Biochemistry, 2008, 47, 4501-4509.	1.2	41

#	Article	IF	CITATIONS
73	The Geometry of DNA Supercoils Modulates Topoisomerase-Mediated DNA Cleavage and Enzyme Response to Anticancer Drugsâ€. Biochemistry, 2006, 45, 3040-3050.	1.2	40
74	Quinolones Inhibit DNA Religation Mediated by Staphylococcus aureus Topoisomerase IV. Journal of Biological Chemistry, 1999, 274, 35927-35932.	1.6	39
75	Role of the Water–Metal Ion Bridge in Mediating Interactions between Quinolones and <i>Escherichia coli</i> Topoisomerase IV. Biochemistry, 2014, 53, 5558-5567.	1.2	38
76	Etoposide Quinone Is a Covalent Poison of Human Topoisomerase Ill ² . Biochemistry, 2014, 53, 3229-3236.	1.2	38
77	Azatoxin Is a Mechanistic Hybrid of the Topoisomerase II-Targeted Anticancer Drugs Etoposide and Ellipticine. Biochemistry, 1997, 36, 13095-13101.	1.2	37
78	Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry, 2021, 60, 1630-1641.	1.2	37
79	DNA Abasic Lesions in a Different Light:Â Solution Structure of an Endogenous Topoisomerase II Poisonâ€. Biochemistry, 1999, 38, 15500-15507.	1.2	36
80	Using 3′-Bridging Phosphorothiolates To Isolate the Forward DNA Cleavage Reaction of Human Topoisomerase IIαâ€. Biochemistry, 2008, 47, 4129-4140.	1.2	35
81	Stimulation of topoisomerase II-mediated DNA cleavage by benzene metabolites. Chemico-Biological Interactions, 2005, 153-154, 197-205.	1.7	34
82	Natural Products as Topoisomerase II Poisons: Effects of Thymoquinone on DNA Cleavage Mediated by Human Topoisomerase IIα. Chemical Research in Toxicology, 2014, 27, 787-793.	1.7	34
83	Inhibition of human DNA topoisomerase IIα by two novel ellipticine derivatives. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1809-1812.	1.0	31
84	MOLECULAR PATHOGENESIS OF SECONDARY ACUTE PROMYELOCYTIC LEUKEMIA. Mediterranean Journal of Hematology and Infectious Diseases, 2011, 3, e2011045.	0.5	30
85	Defining functional drug-interaction domains on topoisomerase II by exploiting mechanistic differences between drug classes. Cancer Chemotherapy and Pharmacology, 1994, 34, S19-S25.	1.1	27
86	Molecular basis of the targeting of topoisomerase II-mediated DNA cleavage by VP16 derivatives conjugated to triplex-forming oligonucleotides. Nucleic Acids Research, 2006, 34, 1900-1911.	6.5	27
87	Catalytic Core of Human Topoisomerase IIα: Insights into Enzyme–DNA Interactions and Drug Mechanism. Biochemistry, 2014, 53, 6595-6602.	1.2	27
88	Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases. Biochemistry, 2015, 54, 4531-4541.	1.2	26
89	Topoisomerase II Is Crucial for Fork Convergence during Vertebrate Replication Termination. Cell Reports, 2019, 29, 422-436.e5.	2.9	26
90	Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV. Nucleic Acids Research, 2011, 39, 4808-4817.	6.5	24

#	Article	IF	CITATIONS
91	Mutation of Cysteine Residue 455 to Alanine in Human Topoisomerase Ilα Confers Hypersensitivity to Quinones:  Enhancing DNA Scission by Closing the N-Terminal Protein Gate. Chemical Research in Toxicology, 2007, 20, 975-981.	1.7	23
92	Coordinating the Two Protomer Active Sites of Human Topoisomerase IIα: Nicks as Topoisomerase II Poisons. Biochemistry, 2009, 48, 1439-1441.	1.2	23
93	Mechanism of Action of <i>Mycobacterium tuberculosis</i> Gyrase Inhibitors: A Novel Class of Gyrase Poisons. ACS Infectious Diseases, 2018, 4, 1211-1222.	1.8	23
94	Activity of Quinolone CP-115,955 Against Bacterial and Human Type II Topoisomerases Is Mediated by Different Interactions. Biochemistry, 2015, 54, 1278-1286.	1.2	22
95	Human Topoisomerase Ilα Possesses an Intrinsic Nucleic Acid Specificity for DNA Ligation. Journal of Biological Chemistry, 2002, 277, 31201-31206.	1.6	21
96	Novel xanthone-polyamine conjugates as catalytic inhibitors of human topoisomerase IIα. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4687-4693.	1.0	21
97	Epimerization of Green Tea Catechins during Brewing Does Not Affect the Ability to Poison Human Type II Topoisomerases. Chemical Research in Toxicology, 2013, 26, 622-628.	1.7	19
98	Coupling the core of the anticancer drug etoposide to an oligonucleotide induces topoisomerase II-mediated cleavage at specific DNA sequences. Nucleic Acids Research, 2018, 46, 2218-2233.	6.5	19
99	Integrating Foundational Sciences in a Clinical Context in the Post-clerkship Curriculum. Medical Science Educator, 2018, 28, 145-154.	0.7	18
100	Recognition of DNA Supercoil Geometry by Mycobacterium tuberculosis Gyrase. Biochemistry, 2017, 56, 5440-5448.	1.2	17
101	Contributions of the D-Ring to the Activity of Etoposide against Human Topoisomerase IIα: Potential Interactions with DNA in the Ternary Enzyme–Drug–DNA Complex. Biochemistry, 2011, 50, 5058-5066.	1.2	16
102	Interactions between Quinolones and <i>Bacillus anthracis</i> Gyrase and the Basis of Drug Resistance. Biochemistry, 2017, 56, 4191-4200.	1.2	16
103	Bimodal Actions of a Naphthyridone/Aminopiperidine-Based Antibacterial That Targets Gyrase and Topoisomerase IV. Biochemistry, 2019, 58, 4447-4455.	1.2	16
104	Spiropyrimidinetrione DNA Gyrase Inhibitors with Potent and Selective Antituberculosis Activity. Journal of Medicinal Chemistry, 2022, 65, 6903-6925.	2.9	16
105	Novel, Potent, and Druglike Tetrahydroquinazoline Inhibitor That Is Highly Selective for Human Topoisomerase II \hat{I}_{\pm} over \hat{I}^2 . Journal of Medicinal Chemistry, 2020, 63, 12873-12886.	2.9	15
106	Prospective tracing of MLL-FRYL clone with low MEIS1 expression from emergence during neuroblastoma treatment to diagnosis of myelodysplastic syndrome. Blood, 2008, 111, 3802-3812.	0.6	14
107	Use of Divalent Metal Ions in the DNA Cleavage Reaction of Human Type II Topoisomerases. Biochemistry, 2009, 48, 1862-1869.	1.2	14
108	From Theory to Practice: Utilizing Competency-Based Milestones to Assess Professional Growth and Development in the Foundational Science Blocks of a Pre-clerkship Medical School Curriculum. Medical Science Educator, 2016, 26, 491-497.	0.7	13

#	Article	IF	CITATIONS
109	Bacterial Type II Topoisomerases and Target-Mediated Drug Resistance. , 2018, , 507-529.		13
110	Selection of DNA Cleavage Sites by Topoisomerase II Results from Enzyme-Induced Flexibility of DNA. Cell Chemical Biology, 2019, 26, 502-511.e3.	2.5	13
111	DNA Ligation Catalyzed by Human Topoisomerase Ilαâ€. Biochemistry, 2004, 43, 13416-13423.	1.2	12
112	Polyamine-containing etoposide derivatives as poisons of human type II topoisomerases: Differential effects on topoisomerase IIα and IIβ. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2961-2968.	1.0	12
113	DNA Topoisomerases as Targets for the Chemotherapeutic Treatment of Cancer. , 2008, , 57-91.		12
114	Novel trifluoromethylated 9-amino-3,4-dihydroacridin-1(2H)-ones act as covalent poisons of human topoisomerase IIα. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 586-589.	1.0	11
115	Using Small Case-Based Learning Groups as a Setting for Teaching Medical Students How to Provide and Receive Peer Feedback. Medical Science Educator, 2017, 27, 759-765.	0.7	11
116	1,2-Naphthoquinone as a Poison of Human Type II Topoisomerases. Chemical Research in Toxicology, 2021, 34, 1082-1090.	1.7	11
117	Bacillus anthracis GrlA ^{V96A} Topoisomerase IV, a Quinolone Resistance Mutation That Does Not Affect the Water-Metal Ion Bridge. Antimicrobial Agents and Chemotherapy, 2014, 58, 7182-7187.	1.4	10
118	Interlinked DNA nano-circles for measuring topoisomerase II activity at the level of single decatenation events. Nucleic Acids Research, 2017, 45, 7855-7869.	6.5	9
119	6,6'-Dihydroxythiobinupharidine as a poison of human type II topoisomerases. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1881-1885.	1.0	9
120	Synthesis and Cytotoxic Evaluation of Arimetamycin A and Its Daunorubicin and Doxorubicin Hybrids. ACS Central Science, 2021, 7, 1327-1337.	5.3	9
121	Two-Dimensional Gel Electrophoresis to Resolve DNA Topoisomers. Methods in Molecular Biology, 2020, 2119, 15-24.	0.4	9
122	Regulation of DNA Topology by Topoisomerases: Mathematics at the Molecular Level. Springer Proceedings in Mathematics and Statistics, 2019, , 411-433.	0.1	8
123	Smoothed Potential MD Simulations for Dissociation Kinetics of Etoposide To Unravel Isoform Specificity in Targeting Human Topoisomerase II. Journal of Chemical Information and Modeling, 2019, 59, 4007-4017.	2.5	7
124	Topoisomerase II poisons inhibit vertebrate DNA replication through distinct mechanisms. EMBO Journal, 2022, 41, e110632.	3.5	7
125	Integrating Foundational Sciences in a Clinical Context in the Post-Clerkship Curriculum. Medical Science Educator, 2018, 28, 145-154.	0.7	5
126	Synthesis and evaluation of ether-linked demethylepipodophyllotoxin dimers. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5627-5629.	1.0	4

#	Article	IF	CITATIONS
127	Evolving Role of the Basic Science Course Director in an Integrated Curriculum. Medical Science Educator, 2014, 24, 349-351.	0.7	4
128	Effects of Secondary Metabolites from the Fungus <i>Septofusidium berolinense</i> on DNA Cleavage Mediated by Human Topoisomerase IIα. Chemical Research in Toxicology, 2016, 29, 415-420.	1.7	4
129	Teaching Biochemistry and Genetics to Students of Medicine, Pharmacy, and Dentistry. Medical Science Educator, 2017, 27, 855-859.	0.7	4
130	DNA Recognition/Processing DNA Topoisomerases: Type II. , 2021, , 479-486.		3
131	1,3-Dioxane-Linked Novel Bacterial Topoisomerase Inhibitors: Expanding Structural Diversity and the Antibacterial Spectrum. ACS Medicinal Chemistry Letters, 2022, 13, 955-963.	1.3	3
132	Teaching Biochemistry to Students of Medicine, Pharmacy and Dentistry. Medical Science Educator, 2015, 25, 473-477.	0.7	2
133	Topoisomerases and Cancer. , 2014, , 1-9.		2
134	NUP98 Translocation Breakpoints in Treatment-Related MDS Are Drug-Stimulated DNA Topoisomerase II Cleavage Sites Blood, 2004, 104, 1970-1970.	0.6	2
135	Role of caspases in apoptotic execution. Biology of the Cell, 1999, 91, 541-542.	0.7	1
136	Quinolones and Eukaryotic Topoisomerases. , 0, , 69-89.		1
137	DNA Topology and Topoisomerases. , 2014, , 1-19.		1
138	DNA Topoisomerase II Poisons and the Etiology of Acute Leukemia in Infants Blood, 2005, 106, 2850-2850.	0.6	1
139	Unraveling the Structure of the Variola Topoisomerase IB-DNA Complex: A Possible New Twist on Smallpox Therapy. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2006, 6, 245-248.	3.4	1
140	Diflomotecan. Ipsen. IDrugs: the Investigational Drugs Journal, 2004, 7, 257-63.	0.7	1
141	DNA supercoil geometry differentially affects the stability of DNA cleavage complexes formed by different type II topoisomerases. FASEB Journal, 2021, 35, .	0.2	Ο
142	Effects of DNA Supercoil Handedness on Catenation by Type II Topoisomerases. FASEB Journal, 2021, 35, .	0.2	0
143	Getting stressed over topoisomerase I poisons. Cell Chemical Biology, 2021, 28, 743-745.	2.5	0
144	The COVID-19 Pandemic: a Year Lost, or a Year Found?. Medical Science Educator, 2021, , 1-6.	0.7	0

#	Article	IF	CITATIONS
145	Topoisomerases and Cancer. , 2018, , 1205-1212.		0